
S4D437
Transactional Apps with the ABAP
RESTful Programming Model

.
.

PARTICIPANT HANDBOOK
INSTRUCTOR-LED TRAINING

.
Course Version: 22
Course Duration: 3 Day(s)
Material Number: 50158033

SAP Copyrights, Trademarks and
Disclaimers

© 2022 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the
express permission of SAP SE or an SAP affiliate company.

SAP and other SAP products and services mentioned herein as well as their respective logos are
trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other
countries. Please see https://www.sap.com/corporate/en/legal/copyright.html for additional
trademark information and notices.

Some software products marketed by SAP SE and its distributors contain proprietary software
components of other software vendors.

National product specifications may vary.

These materials may have been machine translated and may contain grammatical errors or
inaccuracies.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only,
without representation or warranty of any kind, and SAP SE or its affiliated companies shall not be liable
for errors or omissions with respect to the materials. The only warranties for SAP SE or SAP affiliate
company products and services are those that are set forth in the express warranty statements
accompanying such products and services, if any. Nothing herein should be construed as constituting an
additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business
outlined in this document or any related presentation, or to develop or release any functionality
mentioned therein. This document, or any related presentation, and SAP SE’s or its affiliated companies’
strategy and possible future developments, products, and/or platform directions and functionality are
all subject to change and may be changed by SAP SE or its affiliated companies at any time for any
reason without notice. The information in this document is not a commitment, promise, or legal
obligation to deliver any material, code, or functionality. All forward-looking statements are subject to
various risks and uncertainties that could cause actual results to differ materially from expectations.
Readers are cautioned not to place undue reliance on these forward-looking statements, which speak
only as of their dates, and they should not be relied upon in making purchasing decisions.

© Copyright. All rights reserved. iii

https://www.sap.com/corporate/en/legal/copyright.html

Typographic Conventions

American English is the standard used in this handbook.

The following typographic conventions are also used.

This information is displayed in the instructor’s presentation

Demonstration

Procedure

Warning or Caution

Hint

Related or Additional Information

Facilitated Discussion

User interface control Example text

Window title Example text

iv © Copyright. All rights reserved.

Contents

vii Course Overview

1 Unit 1: The ABAP RESTful Programming Model (RAP)

3 Lesson: Understanding the Concept and Architecture of RAP
19 Lesson: Defining an OData UI Service

27 Unit 2: RAP Business Objects (RAP BOs)

29 Lesson: Defining RAP Business Objects and their Behavior
39 Lesson: Using Entity Manipulation Language (EML) to Access RAP

Business Objects
49 Lesson: Understanding Concurrency Control in RAP
55 Lesson: Defining Actions and Messages
69 Lesson: Implementing Authority Checks

79 Unit 3: Update and Create in Managed Transactional Apps

81 Lesson: Enabling Input Fields and Value Help
91 Lesson: Implementing Input Checks with Validations
97 Lesson: Providing Values with Determinations
107 Lesson: Implementing Dynamic Feature Control

115 Unit 4: Draft-Enabled Transactional Apps

117 Lesson: Understanding the Draft Concept
131 Lesson: Developing Draft-Enabled Applications

143 Unit 5: Transactional Apps with Composite Business Object

145 Lesson: Defining Composite RAP Business Objects
155 Lesson: Defining Compositions in OData UI Services
161 Lesson: Implementing the Behavior for Composite RAP BOs

165 Unit 6: Transactional Apps with Unmanaged Business Object

167 Lesson: Understanding Data Access in Unmanaged
Implementations

173 Lesson: Implementing Unmanaged Business Objects

© Copyright. All rights reserved. v

vi © Copyright. All rights reserved.

Course Overview

TARGET AUDIENCE
This course is intended for the following audiences:

● Development Consultant

● Developer

© Copyright. All rights reserved. vii

viii © Copyright. All rights reserved.

UNIT 1 The ABAP RESTful
Programming Model (RAP)

Lesson 1

Understanding the Concept and Architecture of RAP 3

Lesson 2

Defining an OData UI Service 19

UNIT OBJECTIVES

● Understand the concept of RAP

● Use ABAP development tools

● Explain the RAP architecture and business use case

● Define a CDS projection view

● Enrich a projection view with UI metadata

● Create and preview an OData UI service

© Copyright. All rights reserved. 1

Unit 1: The ABAP RESTful Programming Model (RAP)

2 © Copyright. All rights reserved.

Unit 1
Lesson 1

Understanding the Concept and Architecture
of RAP

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Understand the concept of RAP

● Use ABAP development tools

● Explain the RAP architecture and business use case

Overview of the ABAP RESTful Programming Model (RAP)

Figure 1: Modern ABAP Application Development

© Copyright. All rights reserved. 3

Figure 2: The Approach

Figure 3: The ABAP RESTful Application Programming Model (RAP)

The ABAP RESTful Application Programming Model, also known as the ABAP RESTful
Programming Model, ABAP RAP, or RAP for short, is a programming model for ABAP that is
RESTful. This means that it meets the requirements of a REST architecture. In ABAP RAP, AS
ABAP plays the role of a stateless Web server.

Unit 1: The ABAP RESTful Programming Model (RAP)

4 © Copyright. All rights reserved.

Figure 4: What and Where to Develop with RAP

Figure 5: Overview of RAP

RAP consists of the following building blocks:

ABAP Core Data Services
CDS is our ubiquitous modeling language to declare domain data models.

Enterprise Application Infrastructure
The enterprise Application Infrastructure offers:

● Powerful service runtime frameworks

● First-class support for SAP Fiori and SAP HANA

Lesson: Understanding the Concept and Architecture of RAP

© Copyright. All rights reserved. 5

● Out-of-the-box implementations

● Draft support for SAP Fiori UIs

● Built-in extensibility capabilities

OData
OData is a standardized protocol for defining and consuming.

Service Consumption
RAP supports UI development, either based on SAP Fiori elements or as freestyle
SAPUI5 development. It also supports service consumption via Web APIs.

Figure 6: Evolution Towards RAP

Unit 1: The ABAP RESTful Programming Model (RAP)

6 © Copyright. All rights reserved.

ABAP Development Tools

Figure 7: ABAP Development Tools

ABAP Development Tools (ADT) is an alternative to the ABAP Workbench. ADT provides the
following features:

● A completely new ABAP development experience on top of the Eclipse platform

● An open platform for developing new ABAP-related tools

● A set of open, language-independent, and platform-independent APIs that developers can
use to build new custom tools for the ABAP environment

Lesson: Understanding the Concept and Architecture of RAP

© Copyright. All rights reserved. 7

Figure 8: Creating an ABAP Project in ABAP Development Tools

An ABAP project serves as a container for the development objects that are stored in a
particular ABAP back-end system and contains the logon parameters for the system logon:
system, client, user, and language. You must be logged on to the system to edit an object.
Within the ABAP project, you can access any development object in the repository. In
addition, to make it easier to manage objects, you can set up favorite packages for each
project.

Figure 9: Creating a New Repository Object

Unit 1: The ABAP RESTful Programming Model (RAP)

8 © Copyright. All rights reserved.

To create a new repository object in ADT, right-click the project in the project explorer and
choose New → ABAP Repository Object ….. In the following dialog box, you can search for the
type of repository object you want to create.

Note:
For some popular repository objects, there are direct menu entries under the New
menu.

Figure 10: Copying a Repository Object

To create a copy of an existing repository object, right-click the source object in the Project
Explorer and choose Duplicate… .

Note:
You must specify the new package at the beginning of the dialog. In the classical
ABAP workbench, you specify the package at the end.

Lesson: Understanding the Concept and Architecture of RAP

© Copyright. All rights reserved. 9

Figure 11: Editing a Repository Object

To open a specific repository object in its respective editor, double-click it. The editor is
shown on the right side of the ABAP perspective.

RAP Architecture

Figure 12: Architectural Overview

Applications that are developed with the ABAP RESTful Application Programming Model
consist of the following building-blocks:

Business Objects
Business Objects represent the data model and define the data related logic, called
behavior, independent of specific consumption. RAP business objects are defined

Unit 1: The ABAP RESTful Programming Model (RAP)

10 © Copyright. All rights reserved.

through CDS data modeling views, CDS behavior definitions, and Behavior
implementations in ABAP classes.

Business Object Projections
The Business Object Projection is an approach to project and alias a subset of the
business object for a specific business service. The projection enables flexible service
consumption as well as role-based service designs. In RAP, a BO Projection consists of
CDS projection views, CDS Behavior projections, and, if needed, additional or
consumption specific implementations.

Service Definition
A service definition defines the scope of a business service, in particular, the business
object projection to be exposed via this service.

Service Binding
A service binding defines the communication protocol such as OData V2 or OData V4 and
the kind of service to be offered for a consumer, such as UI services or a Web service.

SAP Fiori UI
SAP Fiori UI provides a designated UI for commonly used application patterns based on
OData Services.

Web API
A Web API provides a public interface to access the OData service by any OData client.

Figure 13: What is a Business Object?

A business object (BO) represents an entity of the data model. A RAP BO can either consist of
a single node (Simple BO) or of a hierarchy of nodes (Composite BO). An example for a
Composite BO is a document that consists of a header (root node) and items (child node).

The behavior of a BO defines operations that can be executed on the data, for example the
standard operations Create, Update, Delete (CRUD), but also specific actions and functions.

Lesson: Understanding the Concept and Architecture of RAP

© Copyright. All rights reserved. 11

It also provides feature control (for example, the definition which data is mandatory and which
is read-only), concurrency control (for example, the handling of locks), and authorization
control.

Figure 14: What is a Business Service?

In the context of the ABAP RESTful application programming model, a business service is a
RESTful service that can be called by a consumer. It is defined by exposing its data model
together with the associated behavior. It consists of a service definition and a service binding.

The service definition is a projection of the data model and the related behavior to be
exposed, whereas the service binding defines a specific communication protocol, such as
OData V2 or OData V4, and the kind of service to be offered for a consumer. This separation
allows the data models and service definitions to be integrated into various communication
protocols without the need for reimplementation.

Unit 1: The ABAP RESTful Programming Model (RAP)

12 © Copyright. All rights reserved.

Figure 15: Development Flow

Developing a RAP application consists of the following main steps:

1. Provide the Database Tables.

Developing a RAP application starts with providing the database tables. Depending on the
development scenario, these can be existing tables, legacy tables, or tables created
specifically for this application.

2. Define the Data Model.

The data model of the Business Object is defined with CDS Views. Depending on whether
it is a simple or a composite BO, one or more CDS Views are required. In case of a
composite BO, this is also the place where you define the entity hierarchy.

3. Define and Implement the Behavior (Transactional apps only).

The behavior of a RAP BO is defined in a repository object called CDS Behavior Definition.
Usually, the behavior of a RAP BO also requires some additional logic which is
implemented in a certain type of global ABAP class, called a Behavior Pool. For a non-
transactional application, for example, a list report, the behavior definition or
implementation can be omitted.

4. Project the RAP Business Object and provide service specific Metadata.

The projection of the RAP BO consists of a data model projection, and, if a behavior has
been defined, a behavior projection. To define a projection, you create one or more CDS
projection views, a type of CDS View, and a Behavior Projection, a type of behavior
definition. For UI services, the projection view(s) should be enriched with UI specific
metadata. To support future extensibility of the application, we recommend placing the
service specific annotations in metadata extensions.

5. Define the Service.

Lesson: Understanding the Concept and Architecture of RAP

© Copyright. All rights reserved. 13

In RAP, a service is defined by creating a Service Definition. The service definition
references the projection views and specifies which of them should be exposed, that is,
which of them are visible for the service consumer.

6. Bind the Service and Test the Service.

To specify how the service should be consumed (UI or Web API) and via which protocol
(OData V2 or OData V4), a service binding is needed. For UI services, a Preview is available

Figure 16: Repository Objects for RAP

When expanding the content of an ABAP Development Package in the Project Explorer of
ADT, the repository objects are found in different categories of repository objects.

The database tables, along with the include structures, data elements, and domains needed
for their definition, are found in category Dictionary.

The repository objects defining the data model and projection views, are found in the Core
Data Services → Data Definitions node. According to the recommended naming pattern, the
data model views should have a letter "I" (for Interface) and the projection views a letter "C"
(for Consumption).

The repository objects for the definition and projection of the RAP BO behavior are located in
Core Data Services → Behavior Definitions. Again, the letters "I" and "C" should help to
distinguish between repository objects for definition and for projection.

Service Definitions and Service Bindings have their dedicated sub-nodes under the Business
Services category.

The Behavior Implementation is done in behavior pools, which are global ABAP classes that
fulfill certain requirements. Like all global ABAP classes, they can be found in Source Code
Library → Classes. To make behavior pools distinguishable from other ABAP classes, the
naming pattern requests their names to start with "BP_" or "<namespace>BP_" instead of the
usual "CL_" or "<namespace>CL_" for ordinary ABAP classes.

Unit 1: The ABAP RESTful Programming Model (RAP)

14 © Copyright. All rights reserved.

Similarly, a certain group of global classes used to represent messages at runtime should
have names starting with "CM_" or "<namespace>CM_".

Note:
Where and how CDS Access Controls and CDS Metadata come into play in a RAP
project will be discussed later in this course.

The Business Scenario

Figure 17: The Business Scenario

The Business Scenario in this course is based on the flight data model, which has been used in
ABAP documentation and training for many years.

For this course, we introduce new entities to the model, Flight Travel that a customer books at
a Travel Agency. The Flight Travel consists of several Travel Items, for example bookings on
several flights (a flight and a return flight or a flight and a connecting flight).

To make things easier, we will start with Flight Travel as a simple BO that is not composite.
Later in the course, we will introduce the Travel Agency.

Lesson: Understanding the Concept and Architecture of RAP

© Copyright. All rights reserved. 15

Figure 18: Outline of the Course

We will use the ABAP RESTful programming model (RAP) to build an OData UI service for
Flight Travels and preview the OData UI Service in a generated app that is based on the List
Report Floorplan of SAP Fiori elements.

First, we develop an OData Service for a non-transactional, read-only app that displays a list
and a detail page for flight travels.

Then, we add behavior to the business object, namely an action that the user can execute by
pressing a button on the UI. We will add concurrency control and authorization control to
ensure data consistency and make sure that users only cancel travels for which they have the
required authorization.

Next, we enable direct edition by the user. We discuss value helps, implement input checks,
provide dynamic default values, and we discuss how to enable or disable editing dynamically.

Finally, we develop a RAP Business Object and a transactional app through which the user can
update the master data of a Travel Agency. In this case, we want to reuse legacy code, namely
existing function modules, to update an existing database table. Therefore, we use the
unmanaged implementation type for the business object.

Unit 1: The ABAP RESTful Programming Model (RAP)

16 © Copyright. All rights reserved.

Figure 19: Resulting Read-only App

Figure 20: Defining the Data Model

To define the data model, we create a database table and a CDS View entity.

Lesson: Understanding the Concept and Architecture of RAP

© Copyright. All rights reserved. 17

LESSON SUMMARY
You should now be able to:

● Understand the concept of RAP

● Use ABAP development tools

● Explain the RAP architecture and business use case

Unit 1: The ABAP RESTful Programming Model (RAP)

18 © Copyright. All rights reserved.

Unit 1
Lesson 2

Defining an OData UI Service

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Define a CDS projection view

● Enrich a projection view with UI metadata

● Create and preview an OData UI service

Data Model Projection

Figure 21: Data Model Projection

The data model projection consists of one CDS projection view for each data definition view of
the data model.

Projection views provide means within the specific service to define service-
specific projections including denormalization of the underlying data model. Fine-tuning,
which does not belong to the general data model layer, is defined in projection views, for
example, UI annotations, value helps, calculations, or defaulting.

For the CDS view projection, a subset of the CDS elements is projected in the projection view.
These elements can be aliased, whereas the mapping is done automatically. That means that
the elements can be renamed to match the business service context of the

© Copyright. All rights reserved. 19

respective projection. You cannot add new persistent data elements in the projection views.
Only the elements that are defined in the underlying data model can be reused in
the projection. However, you can add virtual elements to projection views. These elements
must be calculated by ABAP logic.

Figure 22: Creating the Projection View

To create the data definition for a CDS Projection view, we recommend using the context
menu on the name of the data definition view. By doing so, the name of the data definition
view is automatically set as Referenced Object and template define Projection View is pre-
selected by default.

Unit 1: The ABAP RESTful Programming Model (RAP)

20 © Copyright. All rights reserved.

Figure 23: CDS Annotations for Service Metadata

From a design time point of view, the projection layer is the first service-specific layer. All
service specific metadata must be defined in the CDS projection views via CDS annotations.

Element annotations that are not service-specific should be placed in the data model views
from where they are propagated into the projection layer.

An example is annotation @semantics.amount.currencycode, which is used to establish
the connection between an amount field and its currency code field.

The following service specifics are relevant on the projection layer:

● UI annotations defining position, labels, and facets of UI elements

● Search Enablement

● Text elements (language dependent and independent)

● Value Help

It is common practice to outsource the UI-annotations of a projection view in a metadata
extension. This increases readability and facilitates later adjustments of the UI through
additional metadata extensions.

Lesson: Defining an OData UI Service

© Copyright. All rights reserved. 21

Service Definition

Figure 24: The Service Definition

A business service definition (or service definition) describes which CDS entities of a data
model are to be exposed so that a specific business service can be enabled. It is an ABAP
Repository object that describes the consumer-specific but protocol-agnostic perspective on
a data model. This means that a service definition itself is independent of the version or type
of the protocol that is used for the business service.

Unit 1: The ABAP RESTful Programming Model (RAP)

22 © Copyright. All rights reserved.

Figure 25: Creating the Service Definition

To create the service definition, we recommend using the context menu on the name of the
CDS projection view. By doing so, the name of the projection view is automatically set as
Exposed Entity.

Note:
At present, only one template is available for service definitions.

Figure 26: Source Code of the Service Definition

The source code of the actual service definition is preceded by the optional CDS
annotation @EndUserText.label that is available for all objects that can contain CDS
annotations.

The service definition itself is initiated with the DEFINE SERVICE keyword followed by the
name for the service definition.

Lesson: Defining an OData UI Service

© Copyright. All rights reserved. 23

Because a service definition, as a part of a business service, does not have different types or
different specifications, there is (in general) no need for a prefix or suffix to differentiate
meaning. However, if no reuse of the same service definition is planned for UI and API
services, the prefix may follow the rules of the service binding, that, UI_ if the service is
exposed as a UI service and API_ if the service is exposed as Web API.

A pair of curly brackets surrounds a list of EXPOSE statements with the names of the exposed
projection views. The alias names after the keyword AS are optional. They define alternative
names to be used by the consumer of the service.

Service Binding

Figure 27: The Service Definition

The business service binding (or service binding) is an ABAP Repository object used to bind a
service definition to a client-server communication protocol, such as OData.

A service binding relies directly on a service definition derived from the underlying CDS-based
data model. Based on an individual service definition, several service bindings can be created.
The separation between the service definition and the service binding enables a service to
integrate a variety of service protocols without any kind of re-implementation. The services
implemented in this way are based on a separation of the service protocol from the actual
business logic.

Unit 1: The ABAP RESTful Programming Model (RAP)

24 © Copyright. All rights reserved.

Figure 28: Creating the Service Binding

To create a business service binding, we recommend that you use the context menu on the
name of the service definition. By doing so, the name of the service definition is automatically
set as Service Definition in the Create dialog.

To choose a binding type, both the name of the service binding and a description are required.

There are currently four different values for Binding Type available, with different rules for the
service binding name:

OData V2 - UI
Defines an UI service based on version 2 of the OData Protocol. The naming convention
is: Prefix: UI_, Suffix: _02.

OData V2 - Web API
Defines a Web API service based on version 2 of the OData Protocol. The naming
convention is: Prefix: API_, Suffix: _02.

OData V4 - UI
Defines an UI service based on version 4 of the OData Protocol. The naming convention
is: Prefix: UI_, Suffix: _04.

OData V4 - Web API
Defines a Web API service based on version 4 of the OData Protocol. The naming
convention is: Prefix: API_, Suffix: _04.

Note:
We recommend using to use OData V4 wherever possible for transactional
services.

We will start with an OData V2 UI service, because SAP Fiori element UIs only fully support V4
in draft scenarios, which we will cover later.

Lesson: Defining an OData UI Service

© Copyright. All rights reserved. 25

Figure 29: Publishing and Testing a Business Service

After creating the Service Binding, the local service endpoint of an OData service must be
published using the Publish button in the service binding editor. This triggers several task lists
to enable the service for consumption. By publishing the service binding, the service is only
enabled for the current system. It is not consumable from other systems.

Note:
The service binding needs to be active to be published. To activate the service
binding use the activation button in the tool bar.

After publishing, the derived URL (as a part of the service URL) is used to access the OData
service starting from the current ABAP system. It specifies the virtual directory of the service
by following the syntax: /sap/opu/odata/<service_binding_name>
You can start a Fiori Elements Preview directly from the service binding. With this, you can
test UI-related features directly from your ABAP system.

LESSON SUMMARY
You should now be able to:

● Define a CDS projection view

● Enrich a projection view with UI metadata

● Create and preview an OData UI service

Unit 1: The ABAP RESTful Programming Model (RAP)

26 © Copyright. All rights reserved.

UNIT 2 RAP Business Objects (RAP
BOs)

Lesson 1

Defining RAP Business Objects and their Behavior 29

Lesson 2

Using Entity Manipulation Language (EML) to Access RAP Business Objects 39

Lesson 3

Understanding Concurrency Control in RAP 49

Lesson 4

Defining Actions and Messages 55

Lesson 5

Implementing Authority Checks 69

UNIT OBJECTIVES

● Create a CDS behavior definition

● Create a CDS behavior projection

● Describe the purpose and syntax of EML

● Describe the derived data types for RAP Business Objects

● Use the Entity Manipulation Language (EML)

● Describe pessimistic concurrency control (locking)

● Enable optimistic concurrency control

● Define and implement an action

● Expose actions to OData services

● Provide a button in SAP Fiori elements

● Define exception classes for RAP

© Copyright. All rights reserved. 27

● Access application data in behavior implementations

● Restrict read access with access controls

● Implement explicit authority checks

Unit 2: RAP Business Objects (RAP BOs)

28 © Copyright. All rights reserved.

Unit 2
Lesson 1

Defining RAP Business Objects and their
Behavior

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Create a CDS behavior definition

● Create a CDS behavior projection

Behavior Definition

Figure 30: The Behavior Definition

To specify the business object's behavior, the behavior definition of the corresponding
development object is used. A business object behavior definition (behavior definition for
short) is an ABAP Repository object that describes the behavior of a business object in the
context of the ABAP RESTful application programming model. A behavior definition is defined
using the Behavior Definition Language (BDL).

A behavior definition always refers to a CDS data model. It relies directly on the CDS root
entity. One behavior definition refers exactly to one root entity and one CDS root entity has at
most one behavior definition (which also handles all included child entities that are included in
the composition tree).

© Copyright. All rights reserved. 29

Figure 31: Create a New Behavior Definition (1)

You can create behavior definitions like any other repository object, that is, using the context
menu in the project explorer, starting from the package or from its Core Data Services
subnode.

However, it is easier to open the context menu on the data definition of the Root CDS View of
the RAP Business Object. In this way, some of the properties of the behavior definition are
preset by the development tools.

Figure 32: Create a New Behavior Definition (2)

Unit 2: RAP Business Objects (RAP BOs)

30 © Copyright. All rights reserved.

When creating a behavior definition, you cannot specify a name for the new repository object
directly. Instead, the name of the behavior definition is derived from the name of the CDS
View that is used to define the root entity of the business object. For this reason, you must
specify the CDS root view at this early stage.

You must also specify the implementation type of the business object. The possible values
depend on the nature of the related CDS view. For data definition views, you can choose
between Managed and Unmanaged. In behavior definitions for projection views, only the
Projection implementation type is supported.

Figure 33: Minimal Syntax of Behavior Definition

The minimal syntax of a behavior definition includes the implementation type of the business
object and the behavior definition of at least one entity, namely the BO root entity.

If the implementation type is managed, an additional persistent table is required for each
entity of the BO to allow write access to the related database table.

For the managed implementation type, it is also mandatory to set a lock type for each entity.
The root entity has to be set as lock master.

The standard operations (create, update, delete) are part of the template for behavior
definitions. They are not mandatory and can be commented or removed if not required.

Lesson: Defining RAP Business Objects and their Behavior

© Copyright. All rights reserved. 31

Define the Field Mapping

Figure 34: Field Mapping - Motivation

When defining data models, developers often choose to introduce more readable element
names in CDS, especially when, for example, the table is legacy and has cryptic short field
names, maybe even based on German terminology (examples are BUKRS, KUNNR, and so
on).

In the figure, Field Mapping - Motivation, the table field names stdat and enddat are
replaced by the more readable alias names StartDate and EndDate.

Because the field names in the RAP business object are derived from the element names in
the related CDS view, the field names in RAP no longer match the field names in the database
table.

There is no way the RAP framework can determine the table field name in which to store a
certain attribute.

To allow the persisting of such fields, the developer has to provide the information about
which RAP BO field belongs to which table field.

This mapping between field names in the RAP BO and database table fields is defined in the
behavior definition, using an additional mapping, followed by the name of the database table.

Unit 2: RAP Business Objects (RAP BOs)

32 © Copyright. All rights reserved.

Figure 35: Field Mapping - Complete List

In the most complete form, the mapping contains a full list of all field names, with the CDS
element names on the left and the DB table field names on the right.

Note:
The assignment is also required for fields like Trguid and Status, where the
names are the same, apart from differences in upper/lower case.

Lesson: Defining RAP Business Objects and their Behavior

© Copyright. All rights reserved. 33

Figure 36: Field Mapping - Addition Corresponding

By adding the corresponding keyword, the framework implicitly maps all fields for which the
CDS element name and the database table name only differ in upper or lower case. Then, only
the fields for which this is not the case need explicit mapping.

Note:
For the case where all field names are identical (apart from upper or lower case),
the following short form exists: mapping for <…> corresponding;

Unit 2: RAP Business Objects (RAP BOs)

34 © Copyright. All rights reserved.

Behavior Projection

Figure 37: The Behavior Projection

The general business object defines and implements the behavior of what can be done in
general with the data provided by the data model. The BO projection defines only the behavior
that is relevant for the specific service.

The projection behavior definition delegates to the underlying layer. The implementation of
the individual characteristics is only done in the general BO.

Note:
Although the behavior projection is built on top of the behavior definition of the
business object, it does not refer to it directly. Instead, the behavior projection
references the projection views, which are built on top of the data model views
that are referenced by the behavior definition.

Lesson: Defining RAP Business Objects and their Behavior

© Copyright. All rights reserved. 35

Figure 38: Create a New Behavior Projection (1)

The procedure to create a behavior projection is identical to the creation of a behavior
definition. The only difference is that you create the repository object based on the projection
view of a root entity rather than the data model view.

Figure 39: Create a New Behavior Definition (2)

When creating a behavior definition based on a CDS view that is of type projection view, the
implementation is automatically set to Projection and no other value is supported.

Unit 2: RAP Business Objects (RAP BOs)

36 © Copyright. All rights reserved.

Figure 40: Minimal Syntax of Behavior Projection

The minimal syntax of a behavior projection includes key word projection and the behavior
definition for at least one projection view, that is the projection view of the BO root entity.

If the behavior definition of an entity contains standard operations (create, update, delete),
the template for behavior projections adds the standard operations to the projection by
default. They are not mandatory and can be commented out or removed if not required.

LESSON SUMMARY
You should now be able to:

● Create a CDS behavior definition

● Create a CDS behavior projection

Lesson: Defining RAP Business Objects and their Behavior

© Copyright. All rights reserved. 37

Unit 2: RAP Business Objects (RAP BOs)

38 © Copyright. All rights reserved.

Unit 2
Lesson 2

Using Entity Manipulation Language (EML) to
Access RAP Business Objects

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Describe the purpose and syntax of EML

● Describe the derived data types for RAP Business Objects

● Use the Entity Manipulation Language (EML)

The EML Principle

Figure 41: Entity Manipulation Language (EML)

Entity Manipulation Language (EML) is a part of the ABAP language that is used to control the
business object's behavior in the context of ABAP

The ABAP EML is a subset of ABAP for accessing RAP business objects (RAP BOs). EML
statements allow the data content of a RAP BO (transactional buffer) to be read or modified
and the persistent storage of modified data to be triggered.

ABAP EML can be used in all ABAP programs to consume RAP BOs. In particular, they can be
used in the implementation of a RAP BO in a behavior implementation (ABAP behavior
pool) itself. For the latter, there are some special EML variants.

The execution of an EML statement triggers processes in the RAP runtime framework that call
the implementation of the RAP BOs. For unmanaged RAP BOs or unmanaged parts
of managed RAP BOs, the implementation is part of an ABAP behavior pool. Otherwise, it is
part of the RAP provider framework.

The operands of EML statements are mainly special data objects for passing data to and
receiving results or messages from RAP BOs. These data objects are structures and internal

© Copyright. All rights reserved. 39

tables whose types are tailor-made for this purpose and derived from the RAP BO definition,
namely the involved CDS views and behavior definitions.

Figure 42: Example: EML Syntax to Create a RAP BO instance

The example for EML shows the creation of one or several new instances of RAP Business
Object d437_i_text. This RAP BO consists of only one entity (root entity). The name of the
root entity is also d437_i_text.

The actual creation of the new RAP BO instances takes place in EML statement MODIFY
ENTITY, where d437_i_text specifies the (root) entity of the BO. The input for the create
statement is provided by placing ABAP data object gt_text after addition WITH. (To simplify
the example, we omitted the coding to fill internal table gt_text).

ABAP data object gt_text is a good example of a derived data type. The DATA declaration
uses the new syntax variant TYPE TABLE FOR, followed by a keyword to specify the purpose
of the data object and the name of the RAP BO entity. In our case, the keyword is CREATE and
the name of the entity is d437_i_text. As a result, data object gt_text is an internal table
which is tailor-made for a create access to RAP BO entity d437_i_text.

The declaration of data object gs_text uses TYPE STRUCTURE FOR. It is not meant to be
used in an EML statement, but rather as a work area for internal table gt_text.

Data objects gs_failed and gs_failed_late are also declared with derived data types.
They belong to a group of derived types called response types. Response types are always
structures. They depend on the RAP BO entity but not on a specific operation (Create,
Update, Delete, and so on).

After the EML statement MODIFY, the changes are not sent to the database directly. The
persistence of the data changes is triggered by EML statement COMMIT ENTITIES. There is
also a statement ROLLBACK ENTITIES, which can be used to undo changes that are
persisted if there are errors.

Unit 2: RAP Business Objects (RAP BOs)

40 © Copyright. All rights reserved.

Note:
Statements COMMIT ENTITIES and ROLLBACK ENTITIES are only needed
outside RAP BOs. When using EML inside a RAP BO implementation, the RAP
runtime framework takes care of this.

EML Commands

Figure 43: EML Commands - Overview

The figure, EML Commands - Overview, provides an overview of the most important EML
commands, which are the basic operations Read, Create, Update, Delete, Execution
Actions. Depending on the operation, the statement expects one or more internal tables as
operands for input and output. The data types of these operands are derived data types that
depend on the RAP BO entity and the individual operation.

Note the following:

● Only the read operation has its own statement, READ ENTITY. The other operations are
variants of the MODIFY ENTITY statement.

● The variants of MODIFY ENTITY are distinguished by a keyword after the name of the
entity. READ ENTITY does not have such a keyword.

● Operations Read and Execute have several input operands and an output operand (the
result). Therefore these operations have more than one related derived types,
distinguished by keywords IMPORT, RESULT, LINK, REQUEST.

● Operations Read, Create, Update, and Delete, only have one operand for input. No IMPORT
keyword is needed.

● The derived types for actions identify the action via the name of the entity and the name of
the action, separated by the tilde (~) character.

Lesson: Using Entity Manipulation Language (EML) to Access RAP Business Objects

© Copyright. All rights reserved. 41

Derived Data Types

Figure 44: Overview of Derived Data Types for Import and Result

The structure types of derived data types depend on the RAP BO entity and the operations.
They contain components of RAP BO entities, that is, persisted key and data field values that
retain their original line type. However, derived types contain additional components that do
not derive their type from the entity. They have special, tailor-made line types that provide
additional information required in the context of transactional processing. The names of
those additional components begin with % to avoid naming conflicts with components of the
CDS entities.

Let us consider a RAP BO entity that consists of five fields, named field1, field2, and so on, of
which the first two fields are key fields.

If we look at the derived data types for operation Read, we can see that the result contains all
five fields, whereas the derived data type FOR READ IMPORT contains only the key fields. The
same is true for the derived type for operation Delete.

On the other hand, the types for Read, Import, Update, and Create contain a generated
substructure of generic name %control. This substructure has as many components as there
are fields in the RAP BO entity. The names of the components are identical to the fields in the
entity but their data type is ABAP_BEHV_FLAG. % is used in certain cases to specify which
fields are requested or provided.

Note:
Data element ABAP_BEHV_FLAG serves as a Boolean type in RAP. Allowed values
are available in structured constant MK of interface IF_ABAP_BEHV.

Unit 2: RAP Business Objects (RAP BOs)

42 © Copyright. All rights reserved.

Note:
The technical type of data element ABAP_BEHV_FLAG is RAW(1) and not
CHAR(1), as you might expect. Constants ABAP_TRUE, ABAP_FALSE or literals
'X' and ' ' are not compatible.

Components %cid and %cid_ref are needed for situations where the values for the key
fields of newly created instances are not provided by the consumer, but calculated by the BO
logic (internal numbering). In such a situation, the coding calling the Create operation, has
to provide unique string values for %cid to identify the new instances. The framework returns
a table with the mapping of %cid values and the calculated key values.

Figure 45: Component Groups in Derived Types

In addition to the physical components, derived types also contain component groups. They
begin with % too and serve the purpose of summarizing groups of table columns under a
single name. For example, %data summarizes all elements of the related entity (CDS view).

Technically, the component groups are named includes and the components can be
addressed by the name of the include.

In the example in the figure, Component Groups in Derived Types, field2 is addressed
directly as part of the named include %tky, and as part of the named include %data. Because
%tky is part of %data, the field can even be addressed as component %tky of named include
%data.

Note:
Named include %key is obsolete and should not be used anymore. It has been
replaced with %tky. Although in non-draft scenarios, %key and %tky are identical,
they differ in draft scenarios, where %tky contains an additional field %is_draft,
by which the framework distinguishes draft and active version of an entity.

Lesson: Using Entity Manipulation Language (EML) to Access RAP Business Objects

© Copyright. All rights reserved. 43

Response Operands

Figure 46: Response Operands

In addition to the input and result operands, EML statements use a set of response operands
to provide feedback on the outcome of an operation. While the types of the operands for input
and result depend on the entity and the individual operation, the type of the response
operands only depends on the RAP business object, identified by the name of its root entity.
Currently, there are three response operands, but not all are available for all EML statements.

Responses are imported by adding keywords FAILED, REPORTED, or MAPPED to the EML
statement. These keywords have to be followed by a deep structure of the related derived
data type for the RAP BO root entity. The import of responses is optional.

EML offers the following response operands:

● FAILED is used for logging instances for which an operation has failed. The related derived
type is RESPONSE FOR FAILED.

● REPORTED is used for returning messages. These messages are either related to a specific
instance or static, that is, independent from a specific data set.

● MAPPED is used to map the calculated key values of created instances to the provided
temporary IDs (component %cid). It is only relevant for CREATE operations.

Unit 2: RAP Business Objects (RAP BOs)

44 © Copyright. All rights reserved.

Figure 47: Overview of Derived Data Types for Response

The three response types are deep structures with a table-like component for each entity of
the RAP BO.

If we consider a RAP BO with a root entity named Entity1 and a child entity Entity2, then
the response types have two components named Entity1 and Entity2. Only the derived
type for reported has an additional component named %others, which is also an internal
table but with an elementary line type.

Figure 48: Components of Response Operands

The line types of the table-like components are also derived types, namely the derived types
STRUCTURE FOR FAILED <entity name>, STRUCTURE FOR REPORTED <entity name>,
and STRUCTURE FOR MAPPED <entity name>.

Lesson: Using Entity Manipulation Language (EML) to Access RAP Business Objects

© Copyright. All rights reserved. 45

Note:
Be aware of the difference between RESPONSE FOR FAILED <root entity>
and STRUCTURE FOR FAILED <entity>. RESPONSE FOR FAILED <root
entity> is based on the entire RAP BO, represented by its root entity and defines
a deep structure for the entire RAP BO. STRUCTURE FOR FAILED <entity> is
based on a single entity, root or child.

These types contain the key fields of the related entity plus some generic fields for the details.
As usual, the additional fields start with % to avoid naming conflicts.

We will discuss some of these additional fields later in this course.

Short Form and Long Form

Figure 49: Short Form verus Long Form

Statements READ ENTITY and MODIFY ENITITY are short forms of their longer versions
READ ENTITIES OF and MODIFY ENTITIES OF.

In the long version, the keyword OF is followed by the name of a RAP BO, which is identical to
the name of its root entity. The affected entity is specified after keyword ENTITY. The rest of
the statement is the same in long form and in short form.

The long form allows you to bundle several operations in on statement, either different
operations on the same entity (for example, delete some instances and update some other),
or operations on different entities of the same RAP BO (for example, create a root entity
instance and related instances of a child entity in one call).

The short form is most suitable for RAP BOs, which consist of only one entity (the root entity).

Unit 2: RAP Business Objects (RAP BOs)

46 © Copyright. All rights reserved.

Alias Names for Entities

Figure 50: Aliases for RAP BO Entities

In behavior definition, the name of an entity is derived from the name of the related CDS view.
In addition, you can provide an alias name for the entity. In the example, alias text is assigned
to entity D437_I_TEXT.

In some positions, the technical name of an entity can be replaced with the alias name. This
can help increasing readability and re-usability of code. In the example, the alias text is used in
the long form of an EML statement to identify the entity.

Note:
The alias can only replace the entity name after keyword ENTITY. It cannot
replace the name of the RAP BO after keyword OF. For the same reason, aliases
are not available when using the short form of EML statements.

Note:
The ABAP compiler issues a warning, if an EML statement uses the technical
name of an entity for which an alias exists.

LESSON SUMMARY
You should now be able to:

● Describe the purpose and syntax of EML

● Describe the derived data types for RAP Business Objects

● Use the Entity Manipulation Language (EML)

Lesson: Using Entity Manipulation Language (EML) to Access RAP Business Objects

© Copyright. All rights reserved. 47

Unit 2: RAP Business Objects (RAP BOs)

48 © Copyright. All rights reserved.

Unit 2
Lesson 3

Understanding Concurrency Control in RAP

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Describe pessimistic concurrency control (locking)

● Enable optimistic concurrency control

Concurrency Control Concepts

Figure 51: Concurrency Control in RAP

Concurrency control prevents concurrent and interfering database access of different users.
It ensures that data can only be changed if data consistency is assured.

RESTful applications are designed to be usable by multiple users in parallel. If more than one
user has transactional database access, you must make sure that every user only executes
changes based on the current state of the data so the data stays consistent. In addition, you
must make sure that sure that users do not change the same data at the same time.

There are two approaches to regulate concurrent writing access to data. Both of them must
be used in the ABAP RESTful Application Programming Model to ensure consistent data
changes.

Pessimistic Concurrency Control

Pessimistic concurrency control prevents simultaneous modification access to data on the
database by more than one user.

Pessimistic concurrency control is done by exclusively locking data sets for the time a
modification request is executed. The data set that is being modified by one user cannot be
changed by another user at the same time by using a global lock table.

© Copyright. All rights reserved. 49

The lifetime of such an exclusive lock is tied to the session life cycle. The lock expires once the
lock is actively removed after the successful transaction or with the timeout of the ABAP
session.

In managed scenarios, the business object framework assumes all of the locking tasks. You
do not have to implement the locking mechanism in that case. If you do not want the standard
locking mechanism by the managed business object framework, you can create an
unmanaged lock in the managed scenario. In unmanaged scenarios, the application developer
has to implement the method for lock and implement the locking mechanism. This will be
covered later in this course.

Optimistic Concurrency Control

Optimistic concurrency control enables transactional access to data by multiple users at the
same time, while avoiding inconsistencies and unintentional changes of already modified
data.

The approach of optimistically controlling data relies on the concept that every change on a
data set is logged by a specified field, called the ETag field. Most often, the ETag field contains
a timestamp, a hash value, or any other versioning that precisely identifies the version of the
data set.

Concurrency control based on ETags is independent of the ABAP session and instances are
not blocked to be used by other clients.

Optimistic concurrency control is only relevant when consuming business objects via OData.
That is why the ETag is also referred to as OData ETag.

Pessimistic Concurrency Control

Figure 52: Locking During UPDATE Operation

Technically, pessimistic concurrency control is ensured by using a global lock table. Before
data is changed on the database, the corresponding data set receives a lock entry in the
global lock table.

Every time a lock is requested, the system checks the lock table to determine whether the
request collides with an existing lock. If this is the case, the request is rejected. Otherwise, the
new lock is written to the lock table. After the change request has been successfully executed,

Unit 2: RAP Business Objects (RAP BOs)

50 © Copyright. All rights reserved.

the lock entry on the lock table is removed. The data set is available to be changed by any user
again.

The lifetime of such an exclusive lock is tied to the session life cycle. The lock expires once the
lock is actively removed after the successful transaction or with the timeout of the ABAP
session.

The example illustrates how the lock is set on the global lock table during an UPDATE
operation. The client that first sends a change request makes an entry in the global lock table.
During the time of the transaction, the second client cannot set a lock for the same entity
instance in the global lock tables and the change request is rejected. After the successful
update of client 1, the lock is removed and the same entity instance can be locked by any user.

Hint:
You can use transaction SM12 to analyze current enqueue locks.

Optimistic Concurrency Control

Figure 53: ETag Check in UPDATE Operation

When optimistic concurrency control is enabled for a RAP business object, the OData client
reads the current ETag value with every read request and sends this value back with every
modifying operation.

On each ETag relevant operation, the value the client sends with the request is compared to
the current value of the ETag field on the database. If these values match, the change request
is accepted and the data can be modified. At this point, the business object logic changes the
value of the ETag field.

In the example in the figure, ETag Check in UPDATE Operation, both OData Clients read the
data with value 'X' in the ETag field. When Client 1 sends an update request with ETag value
'X', this request is accepted because ETag field value 'X' matches the value on the database.
During the update of the data, the ETag field value is changed, to 'Y' in our example.

Lesson: Understanding Concurrency Control in RAP

© Copyright. All rights reserved. 51

The ETag mechanism ensures that the client only changes data with exactly the version the
client wants to change. In particular, it is ensured that data an OData client tries to change has
not been changed by another client between data retrieval and sending the change request.
On modifying the entity instance, the ETag value must also be updated to log the change of
the instance and to define a new version for the entity instance.

In the example the update request of Client 2 is rejected because it is sent with ETag field
value 'X'. By comparing this value to the current value on the database, the business object
logic sees that a concurrent modify access took place and that Client 2 is operating on an
outdated version of the data.

ETag Definition and Implementation

Figure 54: Activation of ETag Handling in RAP

In RAP Business Objects, ETag handling is activated by adding keywords etag master or
etag dependent to the behavior definition of the related entity. Root entities are often ETag
masters that log the changes of every business object entity that is part of the BO. The
keyword master is followed by the name of a field that is part of the business object entity.
You must make sure that the value of this field is changed during every modify operation on
this entity.

To expose the ETag for a service specification in the projection layer, the ETag has to be used
in the projection behavior definition for each entity with the syntax use etag. The ETag type
(master or dependent) is derived from the underlying behavior definition and cannot be
changed in the projection behavior definition. Once the ETag is exposed to the service, OData
clients will include the Tag value in any relevant request.

Unit 2: RAP Business Objects (RAP BOs)

52 © Copyright. All rights reserved.

Figure 55: Recommended ETag Field in Managed Scenario

An ETag check is only possible, if the ETag field is updated with a new value whenever the data
set of the entity instance is changed or created. That means, for every modify operation,
except for the delete operation, the ETag value must be uniquely updated.

The managed scenario updates administrative fields automatically if they are annotated with
the respective annotations:

● @Semantics.user.createdBy: true
● @Semantics.systemDateTime.createdAt: true
● @Semantics.user.lastChangedBy: true
● @Semantics.systemDateTimeChangedAt: true

If the element that is annotated with @Semantics.systemDateTime.LastChangedAt:
true is used as an ETag field, it is updated automatically by the framework and receives a
unique value on each update. In this case, you do not have to implement ETag field updates.

If you choose an element as ETag field that is not automatically updated, you have to make
sure that the ETag value is updated on every modify operation via determinations.

LESSON SUMMARY
You should now be able to:

● Describe pessimistic concurrency control (locking)

● Enable optimistic concurrency control

Lesson: Understanding Concurrency Control in RAP

© Copyright. All rights reserved. 53

Unit 2: RAP Business Objects (RAP BOs)

54 © Copyright. All rights reserved.

Unit 2
Lesson 4

Defining Actions and Messages

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Define and implement an action

● Expose actions to OData services

● Provide a button in SAP Fiori elements

● Define exception classes for RAP

● Access application data in behavior implementations

Action Definition

Figure 56: Actions in RAP

In RAP, an action is a non-standard modifying operation that is part of the business logic.

You define an action for an entity in the behavior definition using the action keyword. The logic
of the action is implemented in a dedicated method of the handler class.

By default, actions have an instance reference and are executable by OData requests as well
as by EML from any ABAP coding (public instance action).

The following special types of actions exist:

Internal Action

© Copyright. All rights reserved. 55

To only provide an action for the same BO, the Internal option can be set before the
action name. An internal action can only be accessed from the business logic inside the
business object implementation.

Static Action
The Static option allows you to define a static action that is not bound to any instance but
relates to the complete entity.

Factory Action
With factory actions, you can create entity instances by executing an action. Factory
actions can be instance-bound or static. Instance-bound factory actions can be useful if
you want to copy specific values of an instance. Static factory actions can be used to
create instances with default values.

Note:
Instance factory actions are not supported for the managed implementation type.

When defining an RAP action, defining parameters is optional. Parameters can be input or
output parameters.

Input Parameters
Actions can pass abstract CDS entities or other structures as input parameters. They are
defined by the keyword parameter.

Output Parameters
The output parameter for an action is defined with the keyword result. The result
parameter for actions is optional. However, if a result parameter is declared in the action
definition, it must be filled in the implementation. If the result parameter is defined with
addition selective, the action consumer can decide whether the result shall be returned
completely or only parts of it. This can help improve performance. A result cardinality
determines the multiplicity of the output.

Figure 57: Example: Action Definition

Unit 2: RAP Business Objects (RAP BOs)

56 © Copyright. All rights reserved.

The behavior definition in the example defines two public actions: a static action and an
instance action. The static action has no parameters at all. The instance action has a result
parameter with cardinality [0..1] and the symbolic type $self. The type $self indicates that
the result has the same type as the entity. The action can return up to one data sets of type
D437_I_Text.

Action Implementation

Figure 58: The Behavior Implementation (Behavior Pools)

The transactional behavior of a business object in the context of the current programming
model is implemented in one or more global ABAP classes. These special classes are
dedicated only to implementing the business object's behavior and are called behavior pools.
You can assign any number of behavior pools to a behavior definition. Within a single global
class, you can define multiple local classes that handle the business object's behavior. The
global class is just a container and is basically empty, while the actual behavior logic is
implemented in local classes.

Lesson: Defining Actions and Messages

© Copyright. All rights reserved. 57

Figure 59: Definition of the Behavior Pool

In an unmanaged implementation scenario, a behavior pool is always required.

In a managed implementation scenario, a behavior pool is only required if the behavior
definition contains components that can't be handled by the managed RAP BO provider, such
as actions or validations.

You specify a behavior pool for the RAP business object by adding implementation in class
<ClassName> unique to the behavior definition header (statement managed or unmanaged).
The mandatory addition unique defines that each operation can be implemented exactly
once.

Hint:
The recommended name for the behavior pool starts with BP_ (or
<namespace>BP_), followed by the name of the RAP Business Object. This name
is part of the comment, generated by the template for behavior definitions.

Note:
By adding the syntax above to the behavior definition header, you define one
behavior pool for the entire RAP BO. In more complex scenarios, with BOs that
consist of many entities, you can define behavior pools for individual entities by
adding the syntax to the define behavior for statement.

Unit 2: RAP Business Objects (RAP BOs)

58 © Copyright. All rights reserved.

Figure 60: Creating the Behavior Pool

If the ABAP class to which the behavior definition refers does not yet exist, the editor displays
a warning. You can create the ABAP class using a quick fix.

This quick fix creates the class pool and generates the required local class or classes and the
required methods for all parts of the behavior definition that need implementation.

Note:
To invoke the quick fix, the behavior definition has to be saved and activated.

Figure 61: Creating the Action Handler Method

Lesson: Defining Actions and Messages

© Copyright. All rights reserved. 59

If the behavior definition contains the action definition, the quick fix will automatically create
the local handler class and the action implementation method.

If the behavior pool already exists when you add an action (or anything else that needs
implementation), you have to add the missing implementation method to the behavior pool
yourself.

There is a quick fix for updating the behavior pool. To invoke this quick fix, place the cursor on
the name of the action and choose Ctrl + 1.

Note:
The editor displays no warning about the missing implementation. So you cannot
invoke the quick fix by clicking the warning icon. There is warning when you open
the behavior pool and perform a syntax check, but no quick fix is available.

Figure 62: Navigating to the Action Handler Method

The implementation of an action is contained in a local handler class as part of the behavior
pool. To navigate to the definition and implementation of the local class choose the Local
Types tab.

The generated action handler method is located in the local handler class for the related RAP
BO entity. This local class inherits from the base handler
class CL_ABAP_BEHAVIOR_HANDLER. The name of the generated local handler class is lhc_,
followed by the alias name of the entity. If there is no alias, the technical name of the entity is
used instead.

Unit 2: RAP Business Objects (RAP BOs)

60 © Copyright. All rights reserved.

Actions in OData Services

Figure 63: Example: Action Projection

The syntax element use action is used to add actions from the underlying base behavior
definition to the projection. Only such actions can be reused that are defined in the underlying
behavior definition.

Some additions existing to adjust or extend the action definition. Among those is addition as
to define an alias for the action in the projection layer. Addition external defines an alias for
external usage, for example in the OData Service. This external name can be much longer
than the alias name in ABAP and needs to be used when defining the corresponding UI
annotations.

Note:
You can use additions as and external for the same action projection.

Lesson: Defining Actions and Messages

© Copyright. All rights reserved. 61

Actions in SAP Fiori Elements

Figure 64: Action Buttons in UI Metadata

On the UI, actions are triggered by choosing an action button. This action button must be
configured in the backend in the metadata of the related CDS view. Depending on where you
want to use an action button on the UI (list report, or object page), use the
annotation @UI.lineItem or @UI.identification to display an action button.

Note:
The UI-annotations for actions must be used as element annotation. However, it
does not have an impact on which element the action is annotated. The action
button always appears at the same position on the UI.

Hint:
If the behavior projection defines an external alias for action, you have to specify
this alias after the dataAction keyword. If the projection defines an ABAP alias
(keyword as) but no external alias, you have to use this ABAP alias.

Unit 2: RAP Business Objects (RAP BOs)

62 © Copyright. All rights reserved.

Messages in RAP

Figure 65: Messages in EML and RAP

Messages offer an important way to guide and validate consumer and user actions, and help
to avoid and resolve problems. Messages are important to communicate problems to a
consumer or user. Well-designed messages help to recognize, diagnose, and resolve issues.

The message concept of EML and RAP is based on the proven concept of class-based
messages. At runtime, a message is represented by an instance of an ABAP class that
implements global interface IF_MESSAGE.

Note:
In ABAP, all class-based exceptions are message objects, too, because exception
classes inherit from CX_ROOT, which implements interface IF_MESSAGE.

For messages in EML and RAP, it is not sufficient to implement interface IF_MESSAGE. The
relevant classes have to implement the specialized interface IF_ABAP_BEHV_MESSAGE.

Note:
To distinguish the classes for messages from exception classes and usual ABAP
classes, their name should start with CM_ instead of CX_ or CL_.

Lesson: Defining Actions and Messages

© Copyright. All rights reserved. 63

ABAP Class for Class-based Messages

Figure 66: ABAP Class for Class-based Messages

Classes which implement interface IF_ABAP_BEHV_MESSAGE have the following important
instance attributes:

IF_ABAP_BEHV_MESSAGE~M_SEVERITY
Based on elementary type IF_ABAP_BEHV_MESSAGE~T_SEVERITY. Used to specify the
message type (error, warning, information, success).

Possible values in IF_ABAP_BEHV_MESSAGE~SEVERITY.

IF_T100_MESSAGE=>t100key
Based on structure type IF_T100_MESSAGE=>SCX_T100KEY. Used to identify the
message class (ID), the message number, a type and, if applicable, values for the
placeholders &1, &2, &3, and&4 in the message text.

During instantiation of the class, both attributes need to be filled in the constructor logic,
either hard coded or with suitable import parameters. It is a recommended practice to define
one or more structured constants in the public section, to define possible value combinations
for TEXTID. These constants can then be used to supply a constructor parameter textid
when instantiating the message class.

Hint:
The SAP GUI based class builder (SE24) offers a dedicated Texts tab to easily
define such constants. In ABAP Development Tools, you can use source code
template textIDExceptionClass for this purpose.

Unit 2: RAP Business Objects (RAP BOs)

64 © Copyright. All rights reserved.

Reporting Static Messages

Figure 67: Reporting Static Messages

Certain behavior implementation methods, like, for example, action implementation methods
and validation implementation methods, have an implicit response parameter reported. This
parameter indicates that you can issue messages as part of the implementation. To do so,
you have to create an instance of a message class, that is, a class that implements interface
IF_ABAP_BEHV_MESSAGE, and store a reference to this instance in parameter reported.

Static messages, which are not related to an entity instance, are stored in table-like
component %other.

Lesson: Defining Actions and Messages

© Copyright. All rights reserved. 65

Reporting Instance Messages

Figure 68: Reporting Instance Messages

Instance messages, that is, messages related to a instance of a RAP BO entity, are stored in
one of the other components of parameter reported.

If, for example, the message relates to an instance of entity Z00_C_Text, the message is
stored in internal table reported-Z00_C_Text.

Note:
If the behavior definition contains an alias name for the entity, reported uses this
alias name.

First, the key fields of the related entity instance are filled, for example via named include
%tky. Then component %msg is filled with a reference to the created message object.

Unit 2: RAP Business Objects (RAP BOs)

66 © Copyright. All rights reserved.

EML in RAP BO Implementations

Figure 69: EML Inside Behavior Implementation

To access a RAP BOs data from inside its behavior implementation, EML statements are
used. There is no mayor difference in the syntax.

But there is an addition, IN LOCAL MODE, that can currently only be used in the RAP BO
implementations for the particular RAP BO itself. That means that IN LOCAL MODE can only
be used for this RAP BO's implementation classes in the behavior pool or other classes that
are called from those implementation classes (for example, legacy code or other reused logic
contained elsewhere).

The addition is used to exclude feature controls and authorization checks. It can be added to
READ ENTITY/MODIFY ENTITY and to the long forms READ ENTITIES/MODIFY
ENTITIES.

An example use case could be an action implementation that wants to update a field, that is
set to readOnly for consumers of the BO.

Note:
The editor issues a warning if it detects an EML statement where IN LOCAL MODE
could be used, but is missing.

LESSON SUMMARY
You should now be able to:

● Define and implement an action

● Expose actions to OData services

● Provide a button in SAP Fiori elements

● Define exception classes for RAP

Lesson: Defining Actions and Messages

© Copyright. All rights reserved. 67

● Access application data in behavior implementations

Unit 2: RAP Business Objects (RAP BOs)

68 © Copyright. All rights reserved.

Unit 2
Lesson 5

Implementing Authority Checks

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Restrict read access with access controls

● Implement explicit authority checks

Authorization Overview

Figure 70: Authorization Control in RAP

Business applications require an authorization concept for their data and for the operations
on their data. Display and CRUD operations, as well as specific business-related activities, are,
therefore, allowed for authorized users only.

In a transactional development scenario in RAP, you can add authorization checks to various
components of an application. In this case, different mechanisms are used to implement the
authorization concept.

Authorization Checks for Read Operations
To protect data from unauthorized read access, the ABAP CDS provides its
own authorization concept based on a data control language (DCL). To restrict read
access to RAP business objects, it is sufficient to model DCL for the CDS entities used in
RAP business objects. The authorization and role concept of ABAP CDS uses conditions
defined in CDS access control objects to check the authorizations of users for read
access to the data model and data in question. In other words, access control allows you
to limit the results returned by a CDS entity to those results you authorize a user to see.

Authorization Checks for Modify Operations

© Copyright. All rights reserved. 69

In RAP business objects, modifying operations, such as standard operations (create,
update, delete) and actions can be checked against unauthorized access during runtime.
To retrieve user authorizations for incoming requests, authority checks are included in
the behavior definition and implementation for your business object. In case of
negative authorization results, the modification request is rejected.

Note:
In UI scenarios, authority checks for modify operations is particularly
important, because the rejection of a modification request is visualized to
the user (Consumer hints). For example, an action button will be disabled for
line items for which the user lacks execution authority.

Authorizations for OData Services Consumption
SAP Gateway provides predefined roles as templates for developers, administrators, end
users of the content scenarios, and support colleagues. SAP customers will configure the
roles based on these templates and assign users to the roles.

Note:
Important: For you as service developer, there are no further steps
required for the service to be consumed externally within the customer's
landscape. In particular, you don't need to provide any authorization
default values of the authorization objects and specific role templates
required for execution of your service. SAP Gateway already provides
predefined roles as templates for accessing SAP Fiori apps.

Figure 71: Overview of RAP Authorization Control

Unit 2: RAP Business Objects (RAP BOs)

70 © Copyright. All rights reserved.

The figure, Overview of RAP Authorization Control, shows the main design time components
in a transactional development scenario, including the artifacts required for enabling
authorization checks at all levels of the application.

Normalized views serve as the data source for modeling the data associated with the business
object layer. To check the authorizations for read access, corresponding CDS roles are
defined in CDS access controls, using the data control language (DCL). A CDS role specifies
access rules. Each access rule defines access to the CDS view that the role is assigned to.
Different access controls are created for access control at business object data model level
(Data Model View in this figure) and at the consumption level (Projection View in this figure).
While the access rules on data model level are usually based on ABAP authorization objects,
access controls on consumption level often inherit the rules from the underlying access
controls.

The behavior definition on data model level, contains the authorization definition. It specifies
for which entities of the RAP BO individual authority checks are applied and which of the
checks are performed for individual instances. The handler classes in the behavior pool then
provide appropriate code exits for implementing the authorization checks, for example with
ABAP statement AUTHORITY-CHECK.

For developers at SAP, no further steps (concerning authorizations) are required for the
resulting OData service to be consumed in the customer's landscape. SAP gateway already
provides predefined roles as templates for accessing the OData services and SAP Fiori apps.

CDS Access Controls

Figure 72: Creating Access Controls

Access controls enable you to filter access to data in the database. If no access control is
created and deployed for the CDS entity, a user who can access the CDS entity can view all
the data returned.

If you use the PFCG_AUTH aspect in the access control, user-dependent authorizations are
used when accessing the CDS view. To implement this, you need an authorization object in
the ABAP repository on which to base your authorization check. If you want to see the data,
your user must be assigned a role that includes this authorization object with the matching
values in the relevant fields.

Lesson: Implementing Authority Checks

© Copyright. All rights reserved. 71

When CDS views are built on top of each other, each CDS view needs its own access control.
For example, an access control defined for an data model view does not also apply to the
projection view built on top of this data model view. But it is not necessary to repeat the same
conditions repeatedly. By using addition INHERITING CONDITIONS FROM ENTITY, one
access control can inherit the conditions from another, typically an underlying CDS entity. In
this way, a projection view can inherit its conditions from the underlying data model view.

Note:
When inheriting conditions from one entity, it is possible to combine them with the
conditions from another entity or to add further restrictions. Simply use the
keyword AND to link the conditions.

Figure 73: Templates for Creating Access Controls

When creating an Access Control, ADT offers a number of templates for the source code.

The Define Role with PFCG Aspect template is a blue print for an Access Control that defines
conditions based on authorization objects.

The Define Role with Inherited Conditions template uses the addition INHERITING
CONDITIONS FROM ENTITY instead.

Unit 2: RAP Business Objects (RAP BOs)

72 © Copyright. All rights reserved.

Authority Check in Behavior Implementation

Figure 74: Activate Authorization Control in RAP BO

Authorization control in RAP protects your business object against unauthorized access to
data. Authorization control is defined on entity level by adding authorization master
(instance) or authorization dependent to the define behavior statement.

Note:
Currently, only root entities can be authorization masters.

In the brackets after authorization master, the following variants are available:

global
● Limits access to data or the permission to perform certain operations for a complete

RAP BO, independent of individual instances, for example, depending on user roles.

● Must be implemented in the RAP handler method FOR GLOBAL AUTHORIZATION.

instance
● Authorization check that is dependent on the state of an entity instance.

● Must be implemented in the RAP handler method FOR INSTANCE AUTHORIZATION.
For compatibility reasons FOR AUTHORITY is also supported.

global, instance
● Combination of global and instance authorization control: Instance-based operations

are checked in the global and in the instance authority check.

● Both RAP handler methods, FOR GLOBAL AUTHORIZATION and FOR INSTANCE
AUTHORIZATION, must be implemented.

● The checks are executed at different points in time during runtime.

Lesson: Implementing Authority Checks

© Copyright. All rights reserved. 73

Note:
In ABAP Release 7.55, only value instance is supported.

Figure 75: Creating the Authorization Handler Method

If the behavior definition contains the authorization addition when you create the behavior
pool, the quick fix will automatically create the local handler class and the method or methods
for authorization implementation.

If you add the authorization definition when the behavior pool already exists, you have to add
the missing implementation method.

There is a quick fix for updating the behavior pool. To invoke this quick fix, place the cursor on
the keyword master and press Ctrl + 1.

Note:
The quick fix only works if you place the cursor on master. It is not offered if the
cursor stands on authority or instance.

Unit 2: RAP Business Objects (RAP BOs)

74 © Copyright. All rights reserved.

Figure 76: Implementing the Authorization Handler Method

Authorization handler methods are defined with addition FOR INSTANCE AUTHORIZATION or
with addition FOR GLOBAL AUTHORIZATION. The methods that are required depend on the
behavior definition.

Note:
For compatibility reasons, FOR AUTHORITY is also supported and has the same
meaning as FOR INSTANCE AUTHORITY. The quick fix version that is generated
depends on the system release.

Like all handler methods, authorization handler methods require specific parameters that are
supplied or evaluated by the RAP runtime framework. The types of these parameters are
derived from the CDS data definition and the CDS behavior definition.

Note:
You can rename the methods and parameters in the definition part of the handler
class. But in this course, we stick to the names provided by the quick fix to avoid
confusion.

Lesson: Implementing Authority Checks

© Copyright. All rights reserved. 75

Figure 77: Parameters of the Authority Handler Method

The authority handler method has the following parameters:

KEYS

● Keys of the affected entity instances

● Typed with derived data type TABLE FOR AUTHORIZATION KEY

Requested_authorizations

● Can be used to only perform requested checks (performance optimization)

● Contains flags for requested basic operations (create, update, delete) and actions

● Possible values are the components of constant IF_ABAP_BEHV~MK
● Components depend on behavior definition

● Typed with derived data type STRUCTURE FOR AUTHORIZATION REQUEST

Result

● Contains a table of instance keys and flags for basic operations and actions

● Possible values are the components of constant IF_ABAP_BEHV~AUTH
● Type depends on behavior definition

● Typed with derived data type TABLE FOR AUTHORIZATION RESULT

Unit 2: RAP Business Objects (RAP BOs)

76 © Copyright. All rights reserved.

Figure 78: Example: Instance Authorization Check

The code example shows the implementation of an instance base authority check. The check
itself is done with the ABAP statement AUTHORITY-CHECK.

First, the method uses importing parameter keys, to read the data of all entity instances for
which the authority check is to be performed.

It then performs the authorization check for each data set (entity instance) in turn. If the user
does not have the requested authorization, the logic adds a row to parameter result that
contains the key of the entity instance and flags for the disallowed operations.

Note:
The structured constant IF_ABAP_BEHV=>AUTH contains components
AUTHORIZED and UNAUTHORIZED. If an authorization check is successful, you can
explicitly set the flags to AUTHORIZED. This is not necessary if you properly
initialize the structure, because the value of AUTHORIZED equals the built-in initial
value of the flags.

LESSON SUMMARY
You should now be able to:

● Restrict read access with access controls

● Implement explicit authority checks

Lesson: Implementing Authority Checks

© Copyright. All rights reserved. 77

Unit 2: RAP Business Objects (RAP BOs)

78 © Copyright. All rights reserved.

UNIT 3 Update and Create in Managed
Transactional Apps

Lesson 1

Enabling Input Fields and Value Help 81

Lesson 2

Implementing Input Checks with Validations 91

Lesson 3

Providing Values with Determinations 97

Lesson 4

Implementing Dynamic Feature Control 107

UNIT OBJECTIVES

● Enable input fields

● Set input fields to read-only and mandatory

● Define value help for input fields

● Explain validations

● Define and implement input checks

● Link messages to input fields

● Describe the numbering concepts in RAP

● Define and implement determinations

● Explain dynamic action, operation, and field control in RAP

● Implement dynamic feature control

© Copyright. All rights reserved. 79

Unit 3: Update and Create in Managed Transactional Apps

80 © Copyright. All rights reserved.

Unit 3
Lesson 1

Enabling Input Fields and Value Help

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Enable input fields

● Set input fields to read-only and mandatory

● Define value help for input fields

Basic Operation UPDATE

Figure 79: Standard Operations in Behavior Definition

In RAP, update is one of the standard operations. Standard operations are also known
as CRUD operations, which is an acronym for create, read, update, delete.

While the read operation is always implicitly enabled for each entity listed in a CDS behavior,
the modifying operations have to be listed to be available.

To enable standard operation update for an entity, add the statement update; to the entity
behavior body (curly brackets after statement define behavior for …). To disable the
operation, remove the statement or turn it into a comment.

In a managed scenario, the standard operations don't require an ABAP behavior pool,
because they are completely handled by the RAP provisioning framework. In
an unmanaged scenario, the standard operations must be implemented in the ABAP behavior
pool.

Some interesting additions to statement update are as follows:

© Copyright. All rights reserved. 81

Internal
Prefix which disables the operation for external consumers of the BO.

Features: instance or features: global
Enable dynamic feature control. The decision, where and when the operation is enabled,
is made dynamically in a behavior implementation.

precheck
A method is called before the update request to prevent unwanted changes from
reaching the application buffer.

Figure 80: UPDATE in Behavior Projection

To make standard operation update available in OData and SAP Fiori, it has to be reused in
the behavior definition for the projection view (behavior projection).

To include standard operation update in the OData service, add statement use update; to
the entity behavior body (curly brackets after statement define behavior for …). To
disable the operation, remove the statement or turn it into a comment.

Note:
Behavior projections can have their own implementations, which can be used to
augment the implementation of a standard operation or provide additional
prechecks. This is a special case that we will not cover in this class.

As soon as standard operation Update is available in the OData service, the generated SAP
Fiori elements app displays an Edit button on the Object page for the related RAP BO entity.
By choosing this button, the user enters an edit mode for the data displayed on the page.

Unit 3: Update and Create in Managed Transactional Apps

82 © Copyright. All rights reserved.

Hint:
After editing the behavior projection, you might have to perform a hard refresh of
the service preview (Ctrl + F5) before you see the new button. Sometimes, you
have to clear your browsing data too (Ctrl + Shift + Del).

Static Field Control

Figure 81: Read-only Input Fields

The statement field is used in behavior definitions, to specify the characteristics of fields. The
statement is always located between the curly brackets after the statement define behavior
(the entity behavior body). Commas can be used to classify multiple fields in the same way.

For the read-only characteristic of fields, the following variants exists:

Field (readonly)

● Static field attribute.

● The RAP BO does not allow consumers to change the values of the specified field or
fields.

● This is independent from the standard operation the consumers wants to perform
(update, create).

Field (readonly : update)

● Dynamic field attribute.

Lesson: Enabling Input Fields and Value Help

© Copyright. All rights reserved. 83

● Defines a field as read-only during update operations. That means that an external
consumer can set the fields in question during create, but cannot change them later.

Note:
If an RAP BO consumer tries to modify a read-only field using EML, a runtime error
occurs. The RAP BO behavior logic, for example, an action implementation, can
bypass the restriction by using EML statements with the addition IN LOCAL
MODE.

To include the field characteristics into the OData service, it is not necessary to add the field
statements in the behavior projection. The related information is directly included into the
OData Service. The SAP Fiori elements UI uses this information for UI hints, that is, depending
on the operation, the fields will be displayed as editable or read-only.

Figure 82: Mandatory Input Fields

For the mandatory characteristic of fields, the following variants exists:

Field (mandatory)

● Static field attribute.

● The RAP BO always requires a value for the specified field(s) before persisting them
on the database.

● This is independent from the standard operation the consumers wants to perform
(update, create).

Field (mandatory : create)

Unit 3: Update and Create in Managed Transactional Apps

84 © Copyright. All rights reserved.

● Dynamic field attribute.

● Defines a field as mandatory during create operations. This means that an external
consumer must set the fields in question only during create.

In an OData scenario, the fields are marked as mandatory on the user interface.

Note:
There is no runtime check for mandatory fields and no runtime error occurs if a
mandatory field is not filled. If a runtime check is required, the application
developer should implement it using a validation on save.

Figure 83: Hidden Fields

Hiding fields is a question of consumption and the user interface (UI). It is not part of the
object model, therefore, it is not possible to hide fields by editing the CDS behavior definition.

Fields can be hidden by one of the following annotations:

@Consumption.hidden: true
The field is not exposed for any consumption. This means that it is part of the OData
Service and, therefore, not available on the UI.

@UI.hidden: true
The field is not available on the UI. This means that it is not displayed and the user cannot
make it visible using personalization. If, however, there is no additional annotation
@Consumption.hidden: true, the field can still be part of the OData Service.

Lesson: Enabling Input Fields and Value Help

© Copyright. All rights reserved. 85

Note:
If you want to hide a field that is needed in the OData service, you cannot use
@Consumption.hidden: true. You have to use @UI.hidden: true instead.
A good example is the exclusion of technical key fields and ETag fields from the
UI.

Value Help for Input Fields

Figure 84: Value-Help in SAP Fiori App

The implementation of a value help in CDS enables the end user to choose values from a
predefined list for input fields on a user interface.

In SAP Fiori elements apps, value helps are invoked by choosing the value help button next to
the input field or by pressing F4.

By default, the value help dialog consists of a filter dialog, which the user can hide and unhide,
and a list with suggested values.

Unit 3: Update and Create in Managed Transactional Apps

86 © Copyright. All rights reserved.

Figure 85: Multiple Value Helps on One Input Field

It is possible to provide more than one value help on one input field. The end user can select
which value help to use from a dropdown list.

Note:
This is similar to collective search help in classical ABAP dialog programming
techniques (Dynpro and Web Dynpro), but that collective search helps used a
tabstrip for visualization instead of a dropdown list.

Figure 86: Providing Value Help in CDS-based OData Service

To provide a value help for a given field, you first need a CDS view that contains the values for
the value help. This view is referred to as the value help provider. Then, you annotate your
field with @Consumption.valueHelpDefinition and provide the name of the value help
provider and an element for the mapping in the annotation.

Lesson: Enabling Input Fields and Value Help

© Copyright. All rights reserved. 87

Note:
It is also possible to provide value help based on associations, but some
restrictions apply in this case. We won't discuss this option in this course.

You can use any CDS entity as value help provider that contains the desired values of the
element for the input field. However, developers often define dedicated value help views,
because the layout and functionality of the value help dialog is derived from the metadata of
the value help provider view.

Note:
If you are looking for a CDS entity that you can use as value help provider, it might
be helpful to look for a foreign key relation in the underlying table or an association
in the CDS-based data model. Note that the existence of foreign keys or
associations is not a prerequisite for providing a value help.

Figure 87: Simple Value Help

To provide a simple value help for a field, edit the data definition of the source view and
annotate the field with the following annotation:

@Consumption.valueHelpDefinition: [{ entity: { name: 'entityRef’,
 element:
‘elementRef’ } }]
Here, entityRef is the name of the CDS entity that is used as value help provider and
elementRef the element of the value help provider that is used as output parameter of the
value help.

When you expose the source view in an OData service, the value help provider view is
automatically exposed with it. You do not have to list value help provider views in the service
definition.

Unit 3: Update and Create in Managed Transactional Apps

88 © Copyright. All rights reserved.

On an SAP Fiori UI, choosing F4 in the selection field opens a search mask and the end user
can filter by any field in the value help provider view. Selecting an entry transfers the value of
the element that is referenced in the annotation to the annotated element in the source view.

Figure 88: Value Help with Additional Binding

You use additional binding to define more than one binding conditions between elements of
the source view and elements of the value help provider view.

The additional bindings are defined with the subannotation additionalBindings of
annotation @Consumption.valueHelpDefinition. The subannotation is followed by a pair
of square brackets ([..]) with a comma-separated list of element bindings.

Each element binding connects exactly one element of the source view (localElement) and
one element of the value help provider view (element).

In addition, it specifies a usage with one of the following values:

#FILTER
 The value of the referenced element in localElementis used as input for the value help.
The value help proposes only entries that match this filter value.

#RESULT
The value of the referenced element in element is used as additional output. When an
entry is selected in the value help, this value in is transferred to the input field that is
based on the referenced element in localElement.

#FILTER_AND_RESULT
The binding is used for input and output.

LESSON SUMMARY
You should now be able to:

● Enable input fields

Lesson: Enabling Input Fields and Value Help

© Copyright. All rights reserved. 89

● Set input fields to read-only and mandatory

● Define value help for input fields

Unit 3: Update and Create in Managed Transactional Apps

90 © Copyright. All rights reserved.

Unit 3
Lesson 2

Implementing Input Checks with Validations

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Explain validations

● Define and implement input checks

● Link messages to input fields

Validation Definition

Figure 89: Validations in RAP

A validation is an optional part of the business object behavior that checks the consistency of
business object instances based on trigger conditions. Validations, like actions, are defined in
the behavior definition of the RAP BO and implemented in the behavior pool through a
dedicated method of the local handler class.

A validation is implicitly invoked by the business objects framework if the trigger condition of
the validation is fulfilled. Trigger conditions can be modify operations (create, update delete)
and modified fields. The trigger condition is evaluated at the trigger time, a predefined point
during the BO runtime.

An invoked validation can reject inconsistent instance data from being saved by passing the
keys of failed instances to the corresponding table in the FAILED structure. Additionally,
a validation can return messages to the consumer by passing them to the corresponding
table in the REPORTED structure.

© Copyright. All rights reserved. 91

Note:
Validations are available for managed scenarios and for unmanaged scenarios
with draft. They are not available for unmanaged, non-draft scenarios.

Figure 90: Example: Validation Definition

Validations are defined in the entity behavior definition with the following statement:
validation <validation_name> on save { <trigger_conditions> }.

Note:
For validations, only the trigger time on save can be stated.

It is mandatory to provide at least one trigger condition within the curly brackets.

The following trigger conditions are supported:

Create;
Validation is executed when an instance is created.

Update
Validation is executed when an instance is updated.

Delete;
Validation is executed when an instance is deleted.

Field <field1>, <field2>, …;
Validation is executed when the value of one of the specified fields is changed by a create
or update operation.

Multiple trigger conditions can be combined.

Unit 3: Update and Create in Managed Transactional Apps

92 © Copyright. All rights reserved.

Note:
The trigger condition update; works only in combination with the trigger
condition create;.

The behavior definition in the example defines two validations. The first is triggered by any
create or update operation. The other is triggered by changes to the field Text, either during a
create operation or during an update operation.

Note:
The execution order of validations is not fixed. If there is more than one validation
triggered by the same condition, you cannot know which validation is executed
first.

Validation Implementation

Figure 91: Creating the Validation Handler Method

If the behavior definition already contains the validation definition, the quick fix for creating
the behavior pool will automatically create the validation implementation method in the local
handler class.

If the behavior pool already exists when you add the validation definition, you can use a quick
fix to add the missing method to the local handler class. To invoke the quick fix, place the
cursor on the name of the validation and press Ctrl + 1.

Lesson: Implementing Input Checks with Validations

© Copyright. All rights reserved. 93

Figure 92: Implementing the Validation Handler Method

The implementation of a validation is contained in a local handler class as part of the behavior
pool. This local class inherits from the base handler class CL_ABAP_BEHAVIOR_HANDLER.

The signature of a validation method is typed using the keyword FOR VALIDATE ON SAVE
followed by the importing parameter. The type of the importing parameter is an internal table
containing the keys of the instances the validation will be executed on.

Although not visible in the method definition, all validation handler methods have response
parameters failed and reported. These parameters are deep structures and their types are
derived from the definition of the related RAP BO. By adding the key values of an entity
instance to the corresponding table in structure failed, you reject the instance data from
being saved. Additionally, you can return a message to the consumer by passing them to the
corresponding table in the REPORTED structure.

Unit 3: Update and Create in Managed Transactional Apps

94 © Copyright. All rights reserved.

Validation Messages

Figure 93: Messages Bound to Fields

In RAP, messages are either related to a RAP BO entity instance or they are returned in the
%OTHER component of the REPORTED structure.

For messages related to a RAP BO entities, it is possible to further bind them to one or more
fields of the entity. This is particularly helpful for error messages from validations. Binding the
messages to fields improves the user experience, because it enables navigation and clear
allocation of errors when there are multiple error messages.

Figure 94: Component %element in Parameter REPORTED

Lesson: Implementing Input Checks with Validations

© Copyright. All rights reserved. 95

To report a message that is related to field FIELD of RAP BO entity ENTITY, proceed as
follows:

1. Create a message object with message text and message severity.

2. Add a new entry to the table-like component ENTITY of deep structure REPORTED.

3. In the new entry, fill field group %tky with the entity instance key.

4. Fill component %msg with a reference to the message object.

5. ll sub-component FIELD of component %element with IF_ABAP_BEHV=>MK-ON.

If you want to bind the message to more than one field, repeat the last step.

LESSON SUMMARY
You should now be able to:

● Explain validations

● Define and implement input checks

● Link messages to input fields

Unit 3: Update and Create in Managed Transactional Apps

96 © Copyright. All rights reserved.

Unit 3
Lesson 3

Providing Values with Determinations

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Describe the numbering concepts in RAP

● Define and implement determinations

Standard Operation CREATE

Figure 95: Standard Operation CREATE

To enable standard operation create for an entity, add the statement create; to the entity
behavior body (curly brackets after statement define behavior for …). To disable the
operation, remove the statement or turn it into a comment.

Note:
In a managed implementation scenario, create can only be declared for root
entities. Child entities are implicitly create-enabled for internal usage. That means,
an external consumer can only create a new instance of a child entity via its parent
(create-by-association operation). In an unmanaged implementation scenario,
direct creates on child entities are possible but not recommended.

Interesting additions to the create statement are as follows:

● Internal

© Copyright. All rights reserved. 97

Prefix which disables the operation for external consumers of the BO.

● features: global
Enable dynamic feature control. The decision, when the operation is enabled, is made
dynamically in a behavior implementation.

● precheck
A method is called before the create request to prevent unwanted changes from reaching
the application buffer.

● authorization: none
Excludes the create operation from the global authorization checks.

Figure 96: CREATE in Behavior Projection

To make standard operation create available in OData and SAP Fiori, it has to be reused in
the behavior definition for the projection view (behavior projection).

To include standard operation create in the OData service, add the statement use create;
to the entity behavior body (curly brackets after statement define behavior for …). To
disable the operation, remove the statement or turn it into a comment.

Note:
Behavior projections can have their own implementations, which can be used to
augment the implementation of a standard operation or provide additional
prechecks. But this is a special case that we will not cover in this class.

As soon as standard operation create is available in the OData service, the generated SAP
Fiori elements app displays a Create button on the List Report page for the related RAP BO
entity. By choosing this button, the user navigates to an Object page for a new entity instance.

Unit 3: Update and Create in Managed Transactional Apps

98 © Copyright. All rights reserved.

Hint:
After editing the behavior projection, you might have to perform a hard refresh of
the service preview (Ctrl + F5) before you see the new button. Sometimes, you
have to clear your browsing data (Ctrl + Shift + Del) too.

Numbering

Figure 97: Primary Keys in RAP

The primary key of a business object entity can be composed of one or more key fields, which
are identified by the keyword key in the underlying CDS view of the business object. The set of
primary key fields uniquely identifies each instance of a business object entity.

The logic of the business object has to ensure that all entity instances are created with a
unique set of primary key values and that the primary key values of an existing instance
cannot be changed during modify operation update.

The editing is easily prevented by listing the key fields after statement field (read-only) in
the behavior definition body. To only prevent editing during the operation update while still
allowing the consumer to provide values during operation create, the keyword field (read-
only: update) is used instead.

The process of providing a unique key during the creation of a new instance is called
numbering.

There are various options to handle the numbering for primary key fields depending on when
(early or late during the transactional processing) and by whom (consumer, application
developer, or framework) the primary key values are set. You can assign a numbering type for
each primary key field separately. The following options are available:

Lesson: Providing Values with Determinations

© Copyright. All rights reserved. 99

Figure 98: Numbering Techniques in RAP

There are various options to handle the numbering for primary key fields depending on when
and by whom the primary key values are set. You can assign a numbering type for each
primary key field separately. Note the following distinctions:

External vs Internal
In External Numbering, the consumer hands over the primary key values for
the CREATE operation, just like any other values for non-key fields. The runtime
framework (managed or unmanaged) takes over the value and processes it until finally
writing it to the database. In this scenario, the behavior implementation has to ensure
that the primary key value given by the consumer is uniquely identifiable. This is opposed
to Internal Numbering where the key values are provided by the RAP BO logic. Optional
External Numbering is a combination of external and internal numbering: The RAP BO
logic only provides key values in case the consumer hands over initial values.

Managed vs Unmanaged
Internal numbering can either be managed or unmanaged. In Managed Numbering, the
unique key is drawn automatically during the CREATE request by the RAP managed
runtime. This is opposed to Unmanaged Numbering, where the key values are provided in
a dedicated handler method, implemented by the application developer.

Early vs Late
Unmanaged internal numbering can be either early or late. In Early Numbering, the final
key value is available in the transactional buffer instantly after the MODIFY request
for CREATE. This is opposed to Late Numbering, where the final number is only assigned
just before the instance is saved on the database. Late numbering is used for scenarios
that need gap-free numbers. As the final value is only set just before the SAVE,
everything is checked before the number is assigned.

The following restrictions apply:

● Managed Numbering is only possible for key fields with ABAP type raw(16) (UUID) of BOs
with implementation type managed.

● Optional External Numbering is only possible in combination with managed numbering

Unit 3: Update and Create in Managed Transactional Apps

100 © Copyright. All rights reserved.

● Unmanaged Numbering is currently only possible in unmanaged BOs.

Figure 99: Example: External Numbering

In External Numbering, the consumer hands over the primary key values for the CREATE
operation, just like any other values for non-key fields.

To ensure that the consumer can edit the primary key during create operations, but not
during update operations, the primary key fields should be listed in the entity behavior body
after the keyword readonly: update).

In addition, validations and pessimistic concurrency control should be used to avoid duplicate
key errors during the save phase.

Figure 100: Managed Numbering

Lesson: Providing Values with Determinations

© Copyright. All rights reserved. 101

To enable managed internal numbering, you have to list the key field after the keyword field
(numbering: managed) in the entity behavior body. The field in question is automatically
assigned values on creation of a new entity instance. No implementation in the ABAP behavior
pool is required.

The following restrictions apply:

● Only for primary key fields with ABAP type raw(16) (UUID).

● Only in managed implementation scenario

Note:
It is recommended, but not necessary, to define the key field as readonly:
update or readonly to make sure the key of an existing instance cannot be
changed in update operations. If the field is defined as readonly: update, the
key value can also be given by the consumer (Optional External Numbering).

Determination Definition

Figure 101: Determinations in RAP

A determination is an optional part of the business object behavior that modifies instances of
business objects based on trigger conditions. Determinations, like actions and validations, are
defined in the behavior definition of the RAP BO and implemented in the behavior pool
through a dedicated method of the local handler class.

A determination is implicitly invoked by the business objects framework if the trigger
condition of the determination is fulfilled. Trigger conditions can be modify operations
(create, update, delete) and modified fields. The trigger condition is evaluated at the trigger
time, a predefined point during the BO runtime. Two types of determinations are
distinguished, depending on the stage of the program flow the determination is executed: on
modify determinations and on save determinations.

Unit 3: Update and Create in Managed Transactional Apps

102 © Copyright. All rights reserved.

An invoked determination can compute data, modify entity instances according to the
computation result and return messages to the consumer by passing them to the
corresponding table in the REPORTED structure.

Note:
Determinations are available for managed scenarios and for unmanaged
scenarios with draft. They are not available for unmanaged, non-draft scenarios.

Figure 102: Example: Determination Definition

Determinations are defined in the entity behavior definition with the following statement:
determination <determination_name> <trigger time>
{ <trigger_conditions> }.
For determinations, the following trigger times are available:

on modify
The determination is executed immediately after data changes take place in the
transactional buffer so that the result is available during the transaction.

on save
The determination is executed during the save sequence at the end of an transaction,
when changes from the transactional buffer are persistent on the database.

Note:
For determinations, two trigger times are available. Validations are only available
with trigger time on save.

It is mandatory to provide at least one trigger condition within the curly brackets.

The following trigger conditions are supported:

Create;

Lesson: Providing Values with Determinations

© Copyright. All rights reserved. 103

Determination is executed when an instance is created.

Update;
Determination is executed when an instance is updated.

Delete;
Determination is executed when an instance is deleted.

Field <field1>, <field2>, …;
Determination is executed when the value of one of the specified fields is changed by a
create or update operation.

Multiple trigger conditions can be combined.

Note:
For determinations defined as on save, trigger condition update; works only in
combination with the trigger condition create;.

The behavior definition in the example defines one determination. It is executed during the
modify phase, and it is triggered by the create; operation alone. It is not triggered during
update; operations on existing entity instances.

Note:
The execution order of determinations is not fixed. If there is more than one
determination triggered by the same condition, you cannot know which
determination is executed first.

Determination Implementation

Figure 103: Creating the Determination Handler Method

Unit 3: Update and Create in Managed Transactional Apps

104 © Copyright. All rights reserved.

If the behavior definition already contains the determination definition, the quick fix for
creating the behavior pool will automatically create the determination implementation
method in the local handler class.

If the behavior pool already exists when you add the determination definition, you can use a
quick fix to add the missing method to the local handler class. To invoke the quick fix, place
the cursor on the name of the determination and press Ctrl + 1.

Note:
Depending on the trigger time specified in the behavior definition, the method
definition is generated with the addition FOR DETERMINE ON MODIFY or with
the addition FOR DETERMINE ON SAVE. If you change the trigger time later,
there will be a syntax error in the behavior pool, but no error or warning in the
behavior definition. To fix the syntax error, you have to navigate to the method
definition and adjust it manually.

Figure 104: Implementing the Determination Handler Method

The implementation of a determination is contained in a local handler class as part of the
behavior pool. This local class inherits from the base handler
class CL_ABAP_BEHAVIOR_HANDLER.

The signature of a determination method is typed using the keyword FOR DETERMINE
followed by the chosen determination time and the import parameter. The type of the
importing parameter is an internal table containing the keys of the instances the
determination will be executed on.

Although not visible in the method definition, all determination handler methods have a
response parameter reported which allows you to report messages in the determination
implementation.

Lesson: Providing Values with Determinations

© Copyright. All rights reserved. 105

The actual changes to the node instances are performed using the EML statement MODIFY
ENTITY or MODIFY ENTITIES, based on the keys in importing parameter keys.

LESSON SUMMARY
You should now be able to:

● Describe the numbering concepts in RAP

● Define and implement determinations

Unit 3: Update and Create in Managed Transactional Apps

106 © Copyright. All rights reserved.

Unit 3
Lesson 4

Implementing Dynamic Feature Control

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Explain dynamic action, operation, and field control in RAP

● Implement dynamic feature control

Action, Operation, and Field Control

Figure 105: Dynamic Feature Control in RAP

With feature control, you can add information to the service on how data has to be displayed
for consumption in an SAP Fiori UI. Feature control can relate to actions (action control),
standard operations (operation control), and fields (field control).

Action Control is the dynamic enabling and disabling of actions. The decision can either
depend on the data of the affected instance (instance feature control) or not (global feature
control). For example, it should not be possible to cancel an already delivered order.

Operation Control means the enabling and disabling of standard operations create, update,
and delete on node instances. In the case of global feature control, the respective operation is
dynamically enabled or disabled for all instances of the entity, independent of its data. In the
case of instance feature control, the availability of an operation depends on the data. For
example, it should not be possible to edit an order or to add new items to it once the order is
already being processed.

Field Control means the classification of node attributes as read-only or mandatory. In the
case of static field control, the property is the same for all instances of the node, independent
of its data or the change operation. In the case of dynamic field control, the property depends
on the data or the operation. For example, a certain field could be mandatory when creating a
new instance but should be read-only afterwards.

© Copyright. All rights reserved. 107

Note:
Global feature control is not yet supported in ABAP release 7.55.

Feature Control Definition

Figure 106: Addition FEATURES : INSTANCE

Dynamic feature control on instance level is enabled by adding the option (features:
instance) to the respective statement in the behavior definition body. The option is available
for statements update, delete, action, and field.

Note:
Instance feature control is not supported for the create operation, as there is no
instance information available yet. We will see later that instance feature control is
supported for the creation of child entities (Create by association).

Unit 3: Update and Create in Managed Transactional Apps

108 © Copyright. All rights reserved.

Instance Feature Handler Method

Figure 107: Creating the Feature Handler Method

If the behavior definition already contains (features : instance) options, the quick fix for
creating the behavior pool will automatically create the feature control implementation
method in the local handler class.

If the behavior pool already exists when you add the first (features : instance) option, you can
use a quick fix to add the missing method to the local handler class. To invoke the quick fix,
place the cursor on keyword feature and press Ctrl + 1.

Figure 108: Implementing the Feature Handler Method

Lesson: Implementing Dynamic Feature Control

© Copyright. All rights reserved. 109

The logic of dynamic feature control is implemented in a local handler class as part of the
behavior pool. This local class inherits from the base handler
class CL_ABAP_BEHAVIOR_HANDLER.

The signature of the feature control method is typed using the keyword FOR FEATURES
followed by the import parameters. The type of importing parameter keys is an internal table
containing the keys of the instances the feature control will be executed on. Importing
parameter requested_features is a structure of Boolean-like components that reflect
which elements (actions, standard operations, fields) of the entity are requested for dynamic
feature control by the consumer. You can improve the performance of the handler method by
evaluating this parameter and only executing the logic for the requested elements.

Exporting the parameter result is used to return the feature control values. The table-like
parameter includes, besides the key fields, all actions, standard operations, and fields of the
entity, for which the feature control was defined in the behavior definition.

Although not visible in the method definition, the feature handler method also has a response
parameters failed and reported for indicating failures and returning messages

Response Parameter RESULT

Figure 109: Result of Feature Handler Method

The result parameter of the instance feature handler method is an internal table. The first
columns are the key fields of the CDS entity, accessible directly or via named include %tky.

The columns %update and %delete only exist if feature control has been defined for the
related standard operation. The type of these columns is ABP_BEHV_FLAG, with possible
values if_abap_behv=>fc-o-enabled and if_abap_behv=>fc-o-disabled.

The column %action only exists if feature control has been defined for at least one instance
action. The components of %action are named after the actions for which feature control has
been defined. The type of these components is ABP_BEHV_FLAG with possible values
if_abap_behv=>fc-o-enabled and if_abap_behv=>fc-o-disabled.

The column %field only exists if feature control has been defined for at least one field. The
components of %field are named after the fields, for which feature control has been defined.

Unit 3: Update and Create in Managed Transactional Apps

110 © Copyright. All rights reserved.

The type of these components is ABP_BEHV_FEATURE with possible values
if_abap_behv=>fc-f-unrestricted,if_abap_behv=>fc-f-read_only,
if_abap_behv=>fc-f-mandatory, and if_abap_behv=>fc-f-all.

Caution:
It is mandatory that the feature handler method returns at least one entry for
each entity instance listed in import parameter keys. If this is not the case, the
RAP runtime framework terminates with an exception.

Feature Control Implementation

Figure 110: Example: Dynamic Operation Control

A typical implementation of dynamic operation control starts with retrieving the data of all
affected entity instances. For each instance in turn, an entry with the same key is added to the
result parameter.

Note:
It is recommended to use field group %tky to copy the values of the key.

Based on the data, a decision is made about whether to allow the operation for this instance
or not.

To disable the operation, the related component of the result parameter is filled with the value
of the constant if_abap_behv=>fc-o-disabled before adding the new entry.

Note:
If you keep the initial value for the component, the operation stays enabled.

Lesson: Implementing Dynamic Feature Control

© Copyright. All rights reserved. 111

Figure 111: Example: Dynamic Action Control

A typical implementation of dynamic action control follows the same pattern as dynamic
operation control. The difference is that a related component of substructure %action is
filled with the value of constant if_abap_behv=>fc-o-disabled.

In the example, action my_action is disabled if the condition is true for an entity instance.

Figure 112: Example: Dynamic Field Control

Finally, a dynamic field control implementation uses the component of substructure %field
that has the same name as the affected field. In the example, field my_field set to read-
only if the condition is true for an entity instance. Other values for the field behavior are
unrestricted, mandatory, all.

Unit 3: Update and Create in Managed Transactional Apps

112 © Copyright. All rights reserved.

Note:
If you keep the initial value for the component, the field remains unrestricted.

LESSON SUMMARY
You should now be able to:

● Explain dynamic action, operation, and field control in RAP

● Implement dynamic feature control

Lesson: Implementing Dynamic Feature Control

© Copyright. All rights reserved. 113

Unit 3: Update and Create in Managed Transactional Apps

114 © Copyright. All rights reserved.

UNIT 4 Draft-Enabled Transactional
Apps

Lesson 1

Understanding the Draft Concept 117

Lesson 2

Developing Draft-Enabled Applications 131

UNIT OBJECTIVES

● Explain the need for draft in stateless applications

● Enable draft handling in the Business Object

● Enable draft handling in a SAP Fiori elements app

● Explain the difference between transition messages and state messages

● Describe the draft-specifics in behavior implementations

© Copyright. All rights reserved. 115

Unit 4: Draft-Enabled Transactional Apps

116 © Copyright. All rights reserved.

Unit 4
Lesson 1

Understanding the Draft Concept

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Explain the need for draft in stateless applications

● Enable draft handling in the Business Object

Draft Motivation

Figure 113: Stateful Technologies - One Server Session

SAP traditional applications are developed using stateful technologies, such as Floorplan
Manager for Web Dynpro ABAP or the classic Dynpro technique.

These stateful transactional applications rely on a server session along with application
buffers that can fulfill client requests (user interactions with multiple backend round trips)
until the user has saved the data changes and finished their work. In stateful applications,
data entry and data updates work on a temporary in-memory version of a business entity
which is only persisted once it is sufficiently complete and consistent.

© Copyright. All rights reserved. 117

Figure 114: Stateless Technologies - Many Individual Sessions

Modern cloud-ready apps require a stateless communication pattern, for example, to
leverage cloud capabilities like elasticity and scalability. Therefore, there is no fixed backend
session resource along a business transaction for each user and the incoming requests can
be dispatched to different backend resources, which supports load balancing. As a
consequence, the application cannot save a temporary version of the business entity inside
the application.

Figure 115: Stateless Technologies - Non-draft Scenario

The ABAP Restful Application Programming Model follows such a stateless approach. The
application does not save temporary versions on the application server. The application

Unit 4: Draft-Enabled Transactional Apps

118 © Copyright. All rights reserved.

performs checks, actions, and so on, but the changes to the data are only saved once the user
chooses Save. This is referred to as the non-draft scenario.

Figure 116: Solution: Draft Persistence on DB

Both the stateful approach and the non-draft approach have one big disadvantage, the end
user cannot store changed data that is inconsistent to continue at a later point in time or to
recover this data, even if the application terminates unexpectedly.

The draft scenario replaces the temporary in-memory version of the business entity with a
persistent version on the database. This persistent temporary version is known as draft. It is
not stored in the same database tables as the active versions but in special database tables,
the Draft Tables. The draft represents the state and stores the transactional changes until
they are persisted in the active table or discarded.

Figure 117: What is a Draft?

Lesson: Understanding the Draft Concept

© Copyright. All rights reserved. 119

Draft Enabled RAP Business Objects

Figure 118: Enable Draft in Behavior Definition

The draft capability for a draft business object is defined by adding the statement with
draft; in the header part of the behavior definition. You can build draft business objects
from scratch, or you can draft-enable existing business objects with both implementation
types, managed or unmanaged.

Figure 119: Draft Enabled Business Objects

Unit 4: Draft-Enabled Transactional Apps

120 © Copyright. All rights reserved.

In all scenarios, the draft is managed. This means that the draft life cycle is determined by the
RAP draft-runtime as soon as the business object is draft-enabled. You, as an application
developer, do not need to know how the draft instance is created, how draft data is written to
the draft database table, or how the draft instance is activated.

Adding draft capabilities to your business object might imply changes in your business logic
for the processing of active data that you are responsible for. In addition, RAP also offers
implementation exits for cases in which you need business service-specific draft capabilities
that impact the draft handling.

Figure 120: Life-Cycle of Draft 1 - Creating New Instance

The fact that two database tables are involved in the runtime of a draft business object
requires an elaborate life cycle of data. All data undergo several states and state transitions
(actions) while being processed by a draft business object. There are two scenarios that need
to be distinguished: New-Draft and Edit-Draft.

We speak of New-Draft instances if the data is initial data that is not yet persisted on the
active database table. New-draft instances do not have a corresponding active instance.

The life cycle of a new-draft starts with the creation of a new draft instance. The new data is
immediately stored in the draft persistence, regardless of its validity or completeness. Draft
data can be enriched and checked for consistency by execution of the PREPARE action.

With the ACTIVATE action the draft data is copied into active data in the application buffer.
ACTIVATE includes an implicit execution of PREPARE. Once the active instance is
successfully created, the draft instance is discarded and the related data is deleted from the
draft table.

Note:
The ACTIVATE action does not save the active instance on the database. The
actual save is executed separately, either by COMMIT ENTITIES via EML or by
calling the save sequence in case of OData.

Using the DISCARD action on a New-Draft will delete the related data from the application
buffer and the draft table without creating an active instance.

Lesson: Understanding the Draft Concept

© Copyright. All rights reserved. 121

Figure 121: Life-Cycle of a Draft 2 - Editing Existing Instance

Edit-Drafts always exist in parallel to the corresponding active data. They are created by using
the EDIT action on active instances. The whole active instance is copied to the draft table.

Like New-Drafts, Edit-Drafts can be enriched and validated using the PREPARE action.

With the ACTIVATE action the draft data is copied to overwrite the existing active data in the
application buffer. As with New-Drafts, ACTIVATE includes an implicit execution of PREPARE.

Using the DISCARD action on an Edit-Draft will delete the draft data from the application
buffer and the draft table, leaving the active data in the application buffer unchanged.

Draft Tables

Figure 122: Quick Fix to Generate Draft Database Table

Draft business objects need two separate database tables for each entity, one for the active
persistence and one for storing draft instances. With using a separate database table for the
draft information, it is guaranteed that the active persistence database table remains
untouched and consistent for existing database functionality.

Unit 4: Draft-Enabled Transactional Apps

122 © Copyright. All rights reserved.

While the persistent table addition is used to specify the active table of a RAP BO entity, the
draft table is assigned via the draft table addition. The draft table addition is mandatory in
every behavior definition statement as soon as the RAP BO is draft-enabled.

The draft table can be generated automatically via a quick fix in the behavior definition. If the
draft database table already exists, the quick fix completely overwrites the table.

Figure 123: Draft Database Table Layout

The draft database table contains exactly the same fields as the active database table plus
some technical information the RAP runtime needs to handle draft. The technical information
is added with the draft admin include SYCH_BDL_DRAFT_ADMIN_INC.

Note:
Although draft database tables are usual ABAP Dictionary database tables and
there are no technical access restrictions, it is not allowed to directly access the
draft database table via SQL, neither with reading access nor writing access. The
access to the draft database table must always be done via EML, with which the
draft metadata is updated automatically.

Lesson: Understanding the Draft Concept

© Copyright. All rights reserved. 123

Concurrency Control in Draft

Figure 124: Pessimistic Concurrency Control in Draft

RAP uses a combination of pessimistic and optimistic concurrency control to ensure data
consistency.

In scenarios with draft support, the pessimistic concurrency control (locking) plays an even
more crucial role during the draft business object life cycle.

As soon as a draft instance is created for an existing active instance, the active instance
receives an exclusive lock and cannot be modified by another user. The exclusive lock is not
bound to the ABAP session. It remains intact between the different update requests from the
same user. When the user saves or discards the changes, the draft is deleted and the
exclusive lock is removed.

Figure 125: Optimistic Concurrency Control in Draft

There is a maximum duration time for the exclusive lock. This duration time can be
configured. When the timeout of the exclusive lock is reached, it is removed, even though the
draft instance still exists because there was no explicit save or discard from the user. The
pessimistic lock phase ends and the optimistic lock phase begins.

Unit 4: Draft-Enabled Transactional Apps

124 © Copyright. All rights reserved.

During the optimistic lock phase, another user can start editing the active instance of the
business object, that is, set an exclusive lock and create their own draft instance.

Figure 126: End of Optimistic Lock Phase 1 - Draft Timeout

There is a configurable maximum lifetime for drafts. If the draft is not used for a certain period
of time, the draft is discarded automatically by the life-cycle service. If no other draft exists at
that moment, the optimistic lock phase ends.

Figure 127: End of Optimistic Lock Phase 2 - Discard Draft

If the user that created a draft instance for an active instance discards the draft explicitly, the
optimistic lock phase ends. This can be the case if the data changes are no longer relevant.

Lesson: Understanding the Draft Concept

© Copyright. All rights reserved. 125

Figure 128: End of Optimistic Lock Phase 3 - Draft Resume

If the user that created the draft continues to work on the draft instance after the exclusive
locking phase has ended, the draft can be resumed and the changes are still available for the
user. The optimistic locking phase ends as a new exclusive lock is set for the corresponding
active document.

Figure 129: How to Avoid Resume of Outdated Draft?

During the optimistic lock phase, it is possible that another user sets an exclusive lock,
creates another draft instance, and saves the changes to the active instance. If there is legacy
code accessing the same data, it is even possible that the active instance is changed directly
without using a draft.

Unit 4: Draft-Enabled Transactional Apps

126 © Copyright. All rights reserved.

This makes the original draft outdated because it does not reflect the latest changes on the
active instance. If the draft is not touched until it reaches its maximum lifetime, this is not an
issue.

To avoid data inconsistencies, the framework has to ensure that the owner of the draft can
only discard the changes. Resuming the draft must not be possible after the active instance
was changed directly or via another draft instance.

ETag Fields in Draft

Figure 130: Total ETag in Draft Scenario

The RAP runtime framework uses an ETag field approach to identify outdated drafts. If the
ETag field in the active instance and the draft are still the same, the draft is still valid and
resuming is possible. If the value of the ETag field differs in the active instance and the draft
instance, the active instance was changed since the exclusive lock expired and resuming the
draft is no longer possible.

This ETag field is defined by adding total etag to the define behavior statement of the BO's
root entity. The addition total etag is not supported in the behavior definition of child
entities.

Note:
In draft-enabled RAP BOs, it is mandatory to define a total ETag field.

The field to be used as Total ETag field has to meet the following requirements:

● The Total ETag field value in the active version always changes when the active version is
changed

● The Total ETag field value in a draft instance does not change during the draft lifetime

Lesson: Understanding the Draft Concept

© Copyright. All rights reserved. 127

The administrative field annotated with @Semantics.systemdateTime.lastchangedAt:
true, which we used as ETag master field earlier, meets these requirements.

Figure 131: ETag Master in Draft Scenario

On the other hand, the lastChangedAt field is not suitable as ETag master anymore if the
BO is draft-enabled. For optimistic concurrency control in OData to work properly, the ETag
master field has to receive a new value whenever there is an update of the draft instance of
the related RAP BO entity. The lastChangedAt timestamp only changes when the draft is
persisted.

To support OData concurrency control, SAP introduced a specific administrative field, the
LastChangedAt timestamp for the local Instance. Any field annotated with
@Semantics.systemDateTime.localInstanceLastChangedAt: true will be updated
by the RAP runtime framework during every write access to the draft instance,.

Unit 4: Draft-Enabled Transactional Apps

128 © Copyright. All rights reserved.

Draft Actions

Figure 132: Draft Actions

Draft actions are actions that are implicitly available for draft business objects as soon as the
business object is draft-enabled. They only exist for lock master entities, as they always refer
to the whole lockable subtree of a business object.

All draft actions but one are automatically available in EML and exposed to OData, even
without explicitly mentioning it in the behavior definition. The exception is draft action
RESUME, which has to be declared in the behavior definition before it is available in OData and
in EML.

Note:
In ABAP 7.55, draft actions can, but do not have to be, explicitly declared in the
behavior definition. In future releases, their declaration will become mandatory
when using strict mode for the syntax check of a behavior definition.

The following draft actions exist:

Draft Action EDIT
The draft action EDIT copies an active instance to the draft database table. Feature and
authorization control is available for the EDIT, which you can optionally define to restrict
the usage of the action.

Draft Action ACTIVATE
The draft action ACTIVATE is the inverse action to EDIT. It invokes the PREPARE and a
modify call containing all the changes for the active instance in case of an edit-draft, or
a CREATE in case of a new-draft. Once the active instance is successfully created,
the draft instance is discarded.

Lesson: Understanding the Draft Concept

© Copyright. All rights reserved. 129

In contrast to the draft action Edit, the Activate action does not allow feature or
authorization control. Authorization is controlled later when the active instance is saved
to the database.

Draft Action DISCARD
The draft action DISCARD deletes the draft instance from the draft database table. No
feature or authorization control can be implemented.

Draft Determine Action PREPARE
The draft determine action PREPARE executes the determinations and validations that
are specified for it in the behavior definition. The PREPARE enables validating draft data
before the transition to active data.

In the behavior definition, you must specify which determinations and validations are
called during the prepare action. Only determinations and validations that are defined
and implemented for the BO can be used. No validations or determinations are called if
there is nothing specified for the PREPARE.

Draft Action RESUME
The draft action RESUME is executed when a user continues to work on a draft instance
whose exclusive lock for the active data has already expired. It re-creates the lock for the
corresponding instance on the active database table. On an SAP Fiori elements UI, it is
invoked when reopening and changing a draft instance whose exclusive lock is expired.

In case of a new draft, the same feature and authorization control is executed as defined
for a CREATE. In case of an edit-draft, the same feature and authorization control is
executed like in an Edit.

As the RESUME action is application-specific, it is only exposed to OData if it is explicitly
declared in the behavior definition. You can only execute the RESUME action via EML if
the action is explicitly made available in the behavior definition.

LESSON SUMMARY
You should now be able to:

● Explain the need for draft in stateless applications

● Enable draft handling in the Business Object

Unit 4: Draft-Enabled Transactional Apps

130 © Copyright. All rights reserved.

Unit 4
Lesson 2

Developing Draft-Enabled Applications

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Enable draft handling in a SAP Fiori elements app

● Explain the difference between transition messages and state messages

● Describe the draft-specifics in behavior implementations

Draft in SAP Fiori Elements

Figure 133: Projection of Draft-Handling

RAP draft handling can be reused with the syntax element use draft. As a prerequisite, the
underlying RAP BO must be draft-enabled. The draft tables and the total ETag field are
implementation details that are automatically reused and do not have to be explicitly
specified.

Draft actions are reused implicitly, but it is recommended that they are listed explicitly, using
the syntax element use action.

© Copyright. All rights reserved. 131

Note:
In releases after ABAP 7.55, it will become mandatory to explicitly specify all of the
draft actions when using the strict mode.

Figure 134: Editing a Draft Instance

When you edit data in a draft enabled SAP Fiori elements application, the framework will save
the user entries in a draft instance - even if the data is inconsistent or incomplete.

The application indicates this at the bottom of the Object Page, next to the Save and Cancel
buttons.

When the user chooses Save, the framework checks if the draft is consistent (determine
action PREPARE) and, if it is, copy the draft to the active data (action ACTIVATE).

When the user chooses Cancel, the framework will discard the draft instance (action
DISCARD).

When the user navigates back, closes the application, or in the case of any failure, the draft
will remain and the user can pick up editing any time.

Unit 4: Draft-Enabled Transactional Apps

132 © Copyright. All rights reserved.

Figure 135: Visualization of Existing Drafts

On the list, a Draft link below the text field of a node indicates that this entry is a draft
instance. Choosing the link displays a dialog window with administrative data of the draft.

Figure 136: Draft-specific Filter Field

A draft enabled SAP Fiori app displays an additional filter field, Editing Status, by which the
user can select draft instances or active, unchanged instances, only.

Lesson: Developing Draft-Enabled Applications

© Copyright. All rights reserved. 133

Note:
Changing the filter does not trigger a new selection, directly. You have to choose
Go to change the displayed data.

Validations During Prepare

Figure 137: Draft Determine Action PREPARE

All validations, and the determinations defined as on save, are automatically evaluated
during the save phase. This means that, just before the active data from the application buffer
is written to the persistent database table, those validations and determinations are executed,
for which the trigger conditions are fulfilled.

A developer can allow the RAP BO consumer to execute determinations and validations on
request by defining a determine action and assigning determinations and validations to it.

Then, the validations and determinations assigned to the determine action are already
evaluated whenever the determine action is executed.

The purpose of the implicitly defined draft determine action PREPARE is to validate draft data
not only when they are persisted on the database but already before the transition to active
data. It is implicitly executed by draft action ACTIVATE.

Note:
An RAP BO consumer can explicitly execute PREPARE any other time to check the
consistency of the draft instance.

Like all other draft actions, PREPARE is implicitly enabled as soon as the business object is
draft enabled, but, in this case, no determinations and validations are assigned to it. The

Unit 4: Draft-Enabled Transactional Apps

134 © Copyright. All rights reserved.

assignment of determinations and validations must be done explicitly in the behavior
definition. To assign validations and determinations, add a pair of curly brackets after the
action name and list the validations and determinations there.

The following restrictions apply:

● Only determinations and validations that are defined and implemented for the BO can be
used.

● Only determinations defined as on save can be assigned.

Transition Messages and State Messages

Figure 138: State Messages and Transition Messages

RAP distinguishes Transition Messages and State Messages. While transition messages refer
to a triggered request, state messages refer to a business object instance and its values.

A typical example for a transition message could be "Business Object is locked by user &1",
which relates to a triggered request (Edit) and to an (unsuccessful) transition from display to
edit mode.

A typical example for a state message could be "The order date &1 lies in the past" which
relates to an invalid value in a field and an inconsistent state of the business object instance.

State messages are defined when the %state_area component in the REPORTED structure
is filled with a string value. Messages with are empty %state_area are treated as transition
messages. Note that this means all our messages so-far were transition messages.

Transition messages can either be bound to an RAP BO entity instance or be more general,
that is, entered in component %others of the REPORTED structure. State messages must
always be bound to an entity instance. They are not allowed in the component %others.

The most important difference between state messages and transition messages is the
message lifetime and the visualization on the UI in draft scenarios.

In draft scenarios, a transition message appears as a pop-up message and is gone once the
pop-up window is closed.

Lesson: Developing Draft-Enabled Applications

© Copyright. All rights reserved. 135

State messages are displayed in a message pop-over until the state of the business object
changes. If a message is assigned to a field in %ELEMENT, the respective field is framed in the
severity color to illustrate the link between the field values and a message in order to improve
the user experience. For a business object with draft capabilities, state messages are
persisted until the state that caused the message is changed and in a managed scenario, the
messages are buffered until the end of the session.

Note:
In non-draft scenarios, SAP Fiori makes no difference in the visualization of
transition messages and state messages.

Figure 139: Example: Transition Message in Draft-enabled SAP Fiori Apps

The example shows the display of a transition message in a draft-enabled SAP Fiori
application. The message is displayed in a pop-up window that blocks the application until
closed by the user. When closing the window, the messages are deleted. Even though the
message is connected to a field, because the application logic reported it with a non-initial
structure %element, this connection is not visualized, neither is there a link to navigate from
the message to the field nor is the field highlighted, for example with a red border.

Unit 4: Draft-Enabled Transactional Apps

136 © Copyright. All rights reserved.

Figure 140: State Message in Draft-enabled SAP Fiori Apps

This next example shows the display of the same message, but this time it was reported as a
state message.

The message is displayed in a pop-over window that does not block the application. The user
can close the window but this does not delete the message. The connection to the assigned
field is visualized by a navigation link on the message text and a red border to highlight the
field.

Note:
In the current release of our training system (ABAP 7.55), there is a bug with the
display of state messages coming from validations assigned to draft determine
action PREPARE. Each message is displayed twice, once in the pop-over window,
as described above, and additionally in a pop-up window like a transition message.
The issue is reported and under investigation. For the moment, simply close the
pop-up window with the superfluous messages.

Lesson: Developing Draft-Enabled Applications

© Copyright. All rights reserved. 137

Figure 141: Creating and Invalidating State Messages

A message becomes a state message when the %state_area component in
the REPORTED structure is filled with a non-initial value. You can choose any string value but
it is recommended that you stick to ASCII characters.

In draft scenarios, state messages are persisted with the draft data and, in managed
scenarios, they are buffered until the end of the session. If the same request, for example, a
validation, is triggered multiple times on the same instance, the same messages will be added
to the message table again and again. To avoid this, you have to invalidate state messages
explicitly.

In managed scenarios, it is sufficient to add a special row to the related component of
REPORTED. This row should only contain a value for the key (%tky) of the entity instance and
the state area ID (%state_area). All other components like %msg, %element, and so on,
remain initial. With this entry, you delete all messages of the same state area for the specified
entity instance.

Note:
In unmanaged scenarios, additional coding is needed in the implementation of the
DELETE operation, to make sure that the related state messages are removed
when deleting a draft instance.

The value for %state_area is only used to group state messages that are related and should
be invalidated together. The value is not displayed on the UI nor is it contained in the OData
metadata.

For the sake of readability, we recommend choosing a name that uniquely identifies the
condition that the message originates from. For example, if a validation checks if a customer
ID is valid, the %state_area 'Invalid_Customer' can be helpful in characterizing the condition

Unit 4: Draft-Enabled Transactional Apps

138 © Copyright. All rights reserved.

because of which the validation failed. Alternatively, you can choose the name of the
operation a message is thrown in as %state_area, for example `Validate_Customer`.

Hint:
Define constants for the state area IDs to avoid typos and facilitate refactoring.

Implementation Aspects of Draft

Figure 142: Key Component %IS_DRAFT

If a RAP Business Object is draft enabled, all derived types for its entities contain an additional
component %IS_DRAFT that is used to distinguish between active instances and draft
instances.

The example shows screenshots from the table display tool in the ABAP debugger.

The draft indicator %IS_DRAFT is typed with data element abp_behv_flag (technical type
X(1)) and can assume two different values, which can be found in constant structure
if_abap_behv=>mk. For a draft instance, %IS_DRAFT equals if_abap_behv=>mk-on
(#01), and if_abap_behv=>mk-off(#00) for active instances.

In RAP, an edit-draft is created by copying all fields of an active instance. In particular, the
primary key fields have identical values in a draft instance and the corresponding active
instance. The only way to distinguish between draft and active data is the value of
%IS_DRAFT.

Because of this, %IS_DRAFT must be treated like an additional key field that is mandatory
when accessing data via EML and in RAP implementations. The framework supports this by
automatically including component %IS_DRAFT in the component group %tky.

Lesson: Developing Draft-Enabled Applications

© Copyright. All rights reserved. 139

Figure 143: Component Groups %tky and %key

If you use %tky to address the primary key field of an entity, you do not have to change your
business logic implementation when draft-enabling the business object. The business
functionality runs smoothly without adapting your code after draft-enabling your business
object.

If you used field group %key in your business logic implementation, or addressed the key
fields directly via their individual component names, you have to revise the implementation
when draft-enabling the business object.

Note:
The recommendation is to only use %tky in your business logic implementation,
unless you want to read the active instance for a draft instance

Unit 4: Draft-Enabled Transactional Apps

140 © Copyright. All rights reserved.

Figure 144: Example: Feature Control for Draft Instance

In the behavior implementation for a draft-enabled business object, import parameter keys
always contains the technical key fields and the draft indicator %is_draft. When you use
component group %tky to setup the input for a READ ENTITY statement, you read draft data
for draft instances and active data for active instances.

There can be situations where it becomes necessary to read the active data for a draft
instance and not the draft data itself. A good example is the implementation of instance
feature control.

Let’s consider a sales order that becomes read-only when having a certain status (cancelled,
delivered, and so on). When feature control is based on the draft data, the draft becomes
read-only as soon as the user changes the status in the draft. If the status change was done
accidentally, the user has no chance to undo it in the current edit process. The only remaining
option is to cancel the draft and start editing again. But if feature control is based on the
active instance, the draft data remain editable until the active data is updated.

To read the related active data for draft instance, use component group %key instead of %tky
and set the draft indicator %is_draft explicitly.

Note:
For readability reasons, we recommend setting the draft indicator to
if_abap_behv=>mk-off instead of leaving it initial, even though the result is the
same.

LESSON SUMMARY
You should now be able to:

● Enable draft handling in a SAP Fiori elements app

Lesson: Developing Draft-Enabled Applications

© Copyright. All rights reserved. 141

● Explain the difference between transition messages and state messages

● Describe the draft-specifics in behavior implementations

Unit 4: Draft-Enabled Transactional Apps

142 © Copyright. All rights reserved.

UNIT 5 Transactional Apps with
Composite Business Object

Lesson 1

Defining Composite RAP Business Objects 145

Lesson 2

Defining Compositions in OData UI Services 155

Lesson 3

Implementing the Behavior for Composite RAP BOs 161

UNIT OBJECTIVES

● Define compositions in RAP BOs

● Expose compositions to OData services

● Enable navigation in SAP Fiori elements apps

● Access composite business objects with EML

© Copyright. All rights reserved. 143

Unit 5: Transactional Apps with Composite Business Object

144 © Copyright. All rights reserved.

Unit 5
Lesson 1

Defining Composite RAP Business Objects

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Define compositions in RAP BOs

Composite Business Objects in RAP

Figure 145: CDS Views for Composite RAP Business Object

Up to now, we worked with RAP Business Objects that consisted of one single node, the root
entity. More generally, a Business Object (BO) consists of a hierarchical tree of nodes where
each node of is an element that is modeled with a CDS entity and arranged along
a composition path.

At runtime, one instance of the BO consists of exactly one instance of the root entity and a
variable number of instances of the child entities. A sales order, for example, consists of
exactly one header (the root entity instance) and several items (child entity instances).

The hierarchy of entities is defined through two special kinds of associations, namely
by Compositions and To-Parent Associations.

© Copyright. All rights reserved. 145

Note:
It is not necessary to define foreign key relations between the underlying tables.
They are included in the picture to illustrate that the associations in the CDS data
model correspond to relations in the relational data model on ABAP Dictionary
level.

Figure 146: The Composition Tree

In RAP, a composition is a specialized association that defines a whole-part relationship and
always leads from the parent to the direct child. A child entity (composite part) only exists
together with its parent entity (whole). The definition of a composition always requires the
definition of a corresponding to-parent association that leads from the child entity to the
direct parent entity.

In the example, the hierarchy consists of three entities, the root entity (Text), its direct child
entity (Line) and an indirect child entity (Word), which has the first child entity as its parent.
The text is a composition of text lines and each line is a composition of words. For each of the
two compositions, there is a corresponding to-parent association.

As well as the compositions and to-parent associations, it is possible to define other relations
within the composition tree, for example, from a child entity's child to the root entity. Such
relations are defined with ordinary associations. They are not mandatory in general, but might
be needed in certain circumstances, for example, to establish a lock master/ lock dependent
relation over more than two layers.

The following restrictions apply when modeling the composition tree of a RAP Business
Objects:

● There is exactly one root entity.

● The root entity may be the source but must not be the target of a composition.

Unit 5: Transactional Apps with Composite Business Object

146 © Copyright. All rights reserved.

● Source and target of a composition are never the same entity

The cardinality of an association expresses how many instances of an entity may be involved
in the relationship. It specifies the number of entity instances that are connected to a single
source instance and is expressed with a lower bound and an upper bound in the form: x..y
(lower_bound..upper_bound). In a RAP BO, the cardinality of the composition can be 0..1 or
0..n, but the cardinality of a to-parent association always has to be 1..1.

CDS Compositions and To-Parent Associations

Figure 147: Example: Root Entity

The root entity is of particular importance in a composition tree. The root entity serves as a
representation of the business object and defines the top node within a hierarchy in a
business object's structure. This is considered in the source code of the CDS data definition
for D437_I_Text with the keyword ROOT.

The root entity (D437_I_Text) serves as the source of a composition which is defined using
the keyword COMPOSITION in the corresponding data definition. The target of
this composition (D437_I_Line) defines the direct child entity.

CDS compositions are defined similarly to CDS associations. The same rules apply for the
cardinality and the name of the composition. The main difference is that for a composition no
ON-condition is defined explicitly. The ON condition is generated automatically using
the ON condition of the to-parent association of the composition target.

The name of the composition must be added exactly once to the select_list of the CDS view
entity it is defined in, without attributes and alias. If no name is defined for the composition,
the name of the composition is the name of the target entity target and this name must be
made available in the SELECT list.

Caution:
Fields from a composition target can't be used locally in
the SELECT list, WHERE clause, or any other position of the view entity in which it
is defined.

Lesson: Defining Composite RAP Business Objects

© Copyright. All rights reserved. 147

Figure 148: Example: Direct Child Entity

If CDS view entity is the target of a composition, it has to define a CDS to-parent association.
The to-parent association is defined using the special syntax ASSOCIATION TO PARENT.

The direct child entity (D437_I_Line) servers as target of a composition and therefore defines
a to-parent association to the direct parent entity (D437_I_Text).

CDS to-parent associations are defined similarly to CDS associations. The same rules apply
for the name of the association. An ON -condition has to be defined for which some certain
rules apply.

The main difference is that for a to-parent association the cardinality cannot be defined
explicitly for to-parent associations and is generated as [1..1].

A child entity cannot have more than one to-parent associations but itself be a parent entity
and define further compositions. Child entity D437_I_Line, for example, is parent of child
entity D437_I_Word.

The name of the to-parent association must be added exactly once to the select list of the
CDS view entity it is defined in, without attributes and alias. If no name is defined for the
composition, the name of the composition is the name of the target entity target and this
name must be made available in the SELECT list.

The following rules apply to the operands and syntax of the ON condition of a to-parent
association:

● Only key fields of the parent entity

● All key fields of the parent entity

● Each field of child entity only once

● Fields on child entity with prefix $projection

● Only comparison with "="

● No OR or NOT

Unit 5: Transactional Apps with Composite Business Object

148 © Copyright. All rights reserved.

Hint:
To avoid syntax errors, it is recommended to define the to-parent association
first and the corresponding composition after.

Figure 149: Example: Child Entity of Child Entity

The child entity of a child entity only requires the to-parent association to its direct parent. It
is not mandatory to define a direct association to the root entity and there is no special
association type for that purpose. The child entity D437_I_Word of D437_I_Line does not
necessarily require an association to the root entity (D437_I_Text).

We will see later that, when adding the behavior for the RAP BO, such an association can be
helpful, for example, to reference the root entity as lock master or authorization master.

If an association to the root entity is needed, it is defined as an ordinary association with
cardinality (1..1).

Lesson: Defining Composite RAP Business Objects

© Copyright. All rights reserved. 149

Behavior Definition for Composite RAP BO

Figure 150: Behavior Definition for a Composite RAP BO

While each entity of a composite RAP BO has its own data definition, there is only one
behavior definition source per business object.

After some general properties of the business object, for example the implementation type of
draft/non-draft enabled implementation, the behavior definition source contains exactly one
define behavior statement for each entity of the hierarchy.

Figure 151: Behavior Implementation for a Composite RAP BO

Unit 5: Transactional Apps with Composite Business Object

150 © Copyright. All rights reserved.

If a behavior definition source contains more than one DEFINE BEHAVIOR FOR statements,
the corresponding behavior pool, that is the global ABAP class specified after
IMPLEMENTATION IN CLASS, contains one local handler class for each of the entities.

We recommend that the name of the local handler class is lhc_<entity_name> where
<entity_name> is the name of the CDS view entity or, if provided, the alias name for the entity
from the behavior definition.

Hint:
When you use the available quick fix to generate the local handler classes, the
name will automatically follow this guideline.

Figure 152: Associations in the Behavior Definition

By adding your associations to the behavior definition, you explicitly enable read access and
create access for your associations. This means that you allow a RAP BO consumer to read
data from related entity instances or to create new instances of the association target entity.

Read and create access is defined with the statement association _Assoc
{ create; }. Create access is only allowed for compositions. It is not allowed for to-parent
associations. This means that child nodes can be created via their parent node, but parents
can't be created via their child nodes.

Read access only is defined with association _Assoc; or with the alternative syntax
variant, association _Assoc { }. This is allowed for any association defined in the CDS
view entity.

Note:
To-parent associations are automatically read enabled by default and
compositions are read and create enabled by default. We still recommend to
specifying the read- and create-by-association operations explicitly. In future
releases, this will be enforced when using strict-mode.

Lesson: Defining Composite RAP Business Objects

© Copyright. All rights reserved. 151

Figure 153: Some Variants of Statement Association

Several operation additions are available to restrict the usage of an association. If internal is
placed before keyword association, read and create access are forbidden for an outside
consumer of the business object. If it is placed within the curly brackets, before the keyword
create, the create access is restricted, but read access is available for outside consumers.

As for the standard operations, update and delete, you can implement instance feature
control for the create operation. To do so, add (features : instance) within the curly
brackets, after keyword create.

Figure 154: Draft Enabled Associations

By adding with draft; inside the curly brackets, you specify that the association is draft-
enabled. A draft-enabled association retrieves active data if it is followed from an active
instance and draft data if it is followed from a draft source instance (for details about the draft
concept, see CDS BDL - managed, with draft).

If a business object is draft-enabled, then all associations should be draft-enabled, so that the
associations always lead to the target instance with the same state (draft or active).

Unit 5: Transactional Apps with Composite Business Object

152 © Copyright. All rights reserved.

Note:
As soon as you draft-enable a BO by adding with draft, all BO-internal associations
are automatically draft-enabled. To make this behavior explicit, the editor
prompts you to specify the compositions within a draft BO with with draft;.

Figure 155: Locks, ETags, Authorizations and for Child Entities

The root entity of a business object is always defined as lock master and, if etag or
authorization are specified, this is always with addition master.

For child entities, syntax options lock dependent by etag dependent by and authorization
dependent by are available, each followed by the name of an association, that points to the
related master entity.

The following rules apply:

lock:

● Currently, only root entities are allowed as lock master,

● Lock dependent is mandatory for child entities in managed scenarios,

● The association always points to root entity.

etag:

● Child entities can be dependent on master.

● Child entities with etag master have to define an own etag field.

● Association can point to non-root entity that is higher in the hierarchy.

authorization:

Lesson: Defining Composite RAP Business Objects

© Copyright. All rights reserved. 153

● Currently, only root entities are allowed as authorization master.

● Association always points to root entity.

Note:
If an entity is authorization dependent, the authorization check for update,
delete, and create-by-association operations is done as authorization check for
update of the master entity. The authorization check for actions, and create-
enabled associations that are not compositions, is done in separate methods in
the handler class for the dependent entity.

LESSON SUMMARY
You should now be able to:

● Define compositions in RAP BOs

Unit 5: Transactional Apps with Composite Business Object

154 © Copyright. All rights reserved.

Unit 5
Lesson 2

Defining Compositions in OData UI Services

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Expose compositions to OData services

● Enable navigation in SAP Fiori elements apps

Composition in Data Model Projection

Figure 156: Associations in CDS Projection Views

Just like the data definition of composite RAP Business object consists of several CDS view
entities, its projection consists of several CDS projection views, one projection view for each
of the data definition views. To build an OData UI service, each projection view is enriched with
the UI metadata, preferably in a CDS metadata extension.

To make the structure of the business object available in the OData Service too, you have to
establish the hierarchy on the projection layer. To do so, you need compositions and to-
parent associations that link the projection views.

© Copyright. All rights reserved. 155

Note:
It would not be sufficient to simply expose the associations defined in the
underlying data definition views. The targets of those associations are a data
definition views and not projection views. By following such an association, the
consumer would not have access to the required metadata.

Figure 157: Redirecting Associations

Instead of defining completely new associations on projection level, we recommend reusing
the associations from the underlying data model and redirecting them to a new target.

In the example, the data model view on the left (Z00_I_Source), defines and exposes an
association _Asso that uses the data model view on the right as its target (Z00_I_Target).

The view on the upper left (Z00_C_Source) is a projection on of Z00_I_Source. It has access
to the exposed association _Asso and can expose it further. But, by doing so, the association
_Asso would still point to the data definition view Z00_I_Target.

The association is redirected by adding a colon, the keyword redirected to, and the name
of the new target.

This syntax can be used for any kind of association, general associations, compositions, and
to-parent associations. However, when using redirected to <target>, the special
characteristics of the compositions and to-parent associations will be lost.

Unit 5: Transactional Apps with Composite Business Object

156 © Copyright. All rights reserved.

Figure 158: Redirecting Compositions and To-Parent Associations

For redirecting compositions and to-parent associations, ABAP CDS offers the dedicated
syntax elements redirected to composition child and redirected to parent. By
using these variants, the special characteristics of compositions and to-parent associations
are kept.

When using redirected to composition child, the original association has to be a
composition and the new target has to be a projection of the original target. When using
redirected to parent, the original association has to be a to-parent association. The new
target should be a projection of the original target.

Lesson: Defining Compositions in OData UI Services

© Copyright. All rights reserved. 157

Composition in Behavior Projection

Figure 159: Behavior Projection of Composite Business Object

To make the transactional enabling of the associations available in the OData service, we have
to include it in the behavior projection. Similar to use create, use delete, or use action,
a statement use association exists for this purpose.

If RAP draft handling is enabled in the behavior projection (use draft), the associations
must be draft enabled using the syntax addition with draft;.

Facets and Additional Object Page in SAP Fiori

Figure 160: Service Definition for Composite Business Object

If a RAP BO projection consists of several entities, each entity has to be exposed in the service
definition explicitly to make the hierarchy available in the service.

Unit 5: Transactional Apps with Composite Business Object

158 © Copyright. All rights reserved.

Figure 161: Visualization of Child Entity in Second Facet

In an SAP Fiori elements app, the composition can be displayed by adding additional facets to
the object page. The facet can then contain a list of the related child entity instances. In the
example, the object page for root entity Text contains a second facet, which displays a list of
Text Lines.

Figure 162: UI Metadata for Second Facet

The additional facet is defined in the metadata extension of the parent entity. The first facet,
which was already there, displays the data of the parent entity itself. It is of type
#IDENTIFICATION_REFERENCE.

Lesson: Defining Compositions in OData UI Services

© Copyright. All rights reserved. 159

The facet for the child entity data has to be of type #LINEITEM_REFERENCE. Facets of this
type require a value for subannotation targetElement. Here, you specify the name of the
association that links the child entity to the parent entity. Most of the time, this association
will be a composition, or, more precisely, an association that is redirected to a composition
child.

LESSON SUMMARY
You should now be able to:

● Expose compositions to OData services

● Enable navigation in SAP Fiori elements apps

Unit 5: Transactional Apps with Composite Business Object

160 © Copyright. All rights reserved.

Unit 5
Lesson 3

Implementing the Behavior for Composite RAP
BOs

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Access composite business objects with EML

Read-by-Association Operations

Figure 163: Read by Association

When accessing a RAP business object via EML, you can use the associations defined in its
behavior definition to read data from associated child entities that are part of the composition
tree.

Note:
It is also possible to read parent entities via the child entities, however, only from
within the implementation class.

The read-by-association operation is implemented by adding BY \<association_name>
between the entity name and the field specification in READ ENTITIES or READ ENTITY. In the
example, the association name is _line.

© Copyright. All rights reserved. 161

The derived types for the read-by-association operation are defined by using
<entity_name>\<association_name> instead of the entity name

Figure 164: Example: Reading Parent Entity Data and Item Data

It is possible to read parent entity instances and the related child entity instances in the same
EML statement, even when using the short form, READ ENTITY. In the example, gt_keys is
filled with one or several keys for instances of root entity d437_i_travel. The first part of
the READ ENTITY statement retrieves the data for the travel instances.

The second part reads data of all TravelItem instances that are related to the root entity
instances via association _travelitem.

The addition LINK is only available in read-by-association operations and returns an internal
table with keys of source entity instances and target entity instance. It can be used later to
map the travels to the related items if more than one travel has been read.

Hint:
If all you need are the keys of the travel items, you can omit the RESULT addition
and only specify the LINK addition. This can help to improve performance.

Note:
When combing several read and read-by-association operations in one statement,
the response parameters, like, for example the FAILED parameter, only exist
once.

Unit 5: Transactional Apps with Composite Business Object

162 © Copyright. All rights reserved.

Create-by-Association Operations

Figure 165: Create by Association

If an association is create-enabled in the behavior definition, you can use this association to
create instances of the associated entity.

Note:
Up to now, only compositions can be create-enabled. This means that the target
of the association is always a composition child of the entity for which you execute
the operation.

The create-by-association operation is implemented by adding BY \<association_name>
after the keyword CREATE in MODIFY ENTITIES or MODIFY ENTITY. In the example, the
association name is _line.

The derived type for the create-by-association operation is defined by using <entity_name>
\<association_name> instead of the entity name alone.

Lesson: Implementing the Behavior for Composite RAP BOs

© Copyright. All rights reserved. 163

Figure 166: Derived Type for Create-by-Association

The line type of the internal table that serves as import for EML operation Create-By-
Association consists of two parts:

● Elementary components to identify the instance of the parent entity. These fields are
summarized in component group %tky.

● %target is a structured component to specify the data for the new child entity instance,
including a %control structure to specify which components are supplied

The component %cid_ref is needed to identify the parent entity instance in situations where
the actual key is not yet available. This is the case if, for example, internal numbering is used
and the parent entity instance has just been created, or is created in the same EML
statement.

Similarly, the component %cid in the sub-structure %target is used to set a temporary key
for the new child entity instance, by which it can be identified until internal numbering
provides the actual key.

LESSON SUMMARY
You should now be able to:

● Access composite business objects with EML

Unit 5: Transactional Apps with Composite Business Object

164 © Copyright. All rights reserved.

UNIT 6 Transactional Apps with
Unmanaged Business Object

Lesson 1

Understanding Data Access in Unmanaged Implementations 167

Lesson 2

Implementing Unmanaged Business Objects 173

UNIT OBJECTIVES

● Define the behavior for an unmanaged Business Object

● Implement data access of an unmanaged Business Object

© Copyright. All rights reserved. 165

Unit 6: Transactional Apps with Unmanaged Business Object

166 © Copyright. All rights reserved.

Unit 6
Lesson 1

Understanding Data Access in Unmanaged
Implementations

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Define the behavior for an unmanaged Business Object

Interaction Phase and Save Sequence

Figure 167: Interaction Phase and Save Sequence

The business object runtime has two parts:

● The first part is the interaction phase where a consumer calls business object operations
to change data and read instances with or without the transactional changes. The business
object keeps the changes in its transactional buffer, which represents the state.

● After all changes are performed, the data should be persisted. This is implemented within
the save sequence.

In a managed implementation scenario for RAP business objects, the RAP provisioning
framework defines and manages the transactional buffer. During interaction phase, it
automatically fills the buffer with data from the persistent tables, handles write access to the

© Copyright. All rights reserved. 167

buffer during standard operations (create, update, and delete), and takes care of writing the
changed buffer content back to the persistent tables during the save sequence.

Unmanaged versus Managed

Figure 168: Comparison of Managed and Unmanaged Business Objects

In the unmanaged implementation type, the transactional buffer, the standard BO
operations, and the database access must be implemented in the ABAP behavior pool.
Unmanaged implementation is recommended for development scenarios in which business
logic already exists and is intended to be reused. If your start your development from scratch,
or if not much more than the persistent database tables exist, we recommend that you follow
the managed approach.

Some additional restrictions apply for the unmanaged implementation scenario:

● Determinations and Validations are not available, unless the business object is draft
enabled.

● Pessimistic concurrency control (locks) are not mandatory. If they are required, they have
to be implemented manually.

● Optimistic concurrency control (ETag handling) requires the manual implementation of a
READ method that provides the latest version of the entity instance.

Unit 6: Transactional Apps with Unmanaged Business Object

168 © Copyright. All rights reserved.

Handler Class and Saver Class

Figure 169: The Behavior Pool of an Unmanaged RAP BO

If a behavior definition uses the unmanaged implementation type, it is mandatory to specify a
behavior pool.

Like in the managed scenario, this behavior pool contains one local handler class (lhc) for
each entity of the business object. The methods of the local handler classes are triggered
during the interaction phase.

In addition to the local handler classes, the behavior pool of an unmanaged RAP BO contains a
local saver class (lsc). There is not a saver class for each entity but only one saver class for
the business object as a whole. The framework calls the methods of the local saver class
during the save sequence.

The ABAP syntax check issues a warning if the saver class does not at least define a FOR
SAVE method. Similarly, it issues warnings if a FOR READ method is missing in the local
handler classes.

In the unmanaged scenario, it is optional to set the root entity as lock master. If the addition
lock master is present, the corresponding handler class has to define and implement a FOR
LOCK method.

Similarly, corresponding FOR MODIFY methods are required if the behavior definition enables
the standard operations create, update, and delete.

Lesson: Understanding Data Access in Unmanaged Implementations

© Copyright. All rights reserved. 169

Figure 170: Handler Class and Saver Class

If a RAP BO consumer, for example an OData service, sends a modify request to the RAP BO,
the framework triggers the execution of the respective create, update, and delete methods in
the handler classes.

The implementation of these methods validates the data changes and stores them in an
application buffer. Usually, the validation logic and the application buffer are implemented
somewhere outside the behavior pool, for example, in an already existing function module or
global class.

When, during the save sequence, the RAP BO runtime triggers the save() method of the
saver class, the implementation of this class triggers the copying of the application buffer
content to the database.

Unit 6: Transactional Apps with Unmanaged Business Object

170 © Copyright. All rights reserved.

The Save Sequence

Figure 171: Methods of the Saver Class and the Save Sequence

As well as the mandatory FOR SAVE method, you can define and implement several other
methods in the local saver class. They are executed in a given sequence during the save
phase, that is, after at least one successful modification was performed during the interaction
phase.

The save sequence starts with finalize() performing the final calculations before data
can be persisted. If the subsequent check_before_save() call is positive for all
transactional changes, the point-of-no-return is reached. From now on, a successful save()
is guaranteed by all involved BOs. After the point-of-no-return, the adjust_numbers() call
can occur to take care of late numbering. The save() call persists all BO instance data from
the transactional buffer in the database. The final cleanup() call resets the transactional
buffer.

LESSON SUMMARY
You should now be able to:

● Define the behavior for an unmanaged Business Object

Lesson: Understanding Data Access in Unmanaged Implementations

© Copyright. All rights reserved. 171

Unit 6: Transactional Apps with Unmanaged Business Object

172 © Copyright. All rights reserved.

Unit 6
Lesson 2

Implementing Unmanaged Business Objects

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Implement data access of an unmanaged Business Object

Type Mapping

Figure 172: The need for Field Mapping

Whenever existing code and its data types are to be reused in behavior pools of business
objects, you need to perform a mapping between CDS field names and types and the
corresponding legacy field names and types.

In the example, the existing code is a function module with a changing parameter. The
parameter of this function module is typed with d437_s_struct, which is a structure type
with components comp1, comp2, and so on. The RAP BO defines an entity d437_i_entity
with fields named field1, field2, and so on.

Inside the handler methods, the RAP BO data is available in data objects that are based on
derived types for the entity. To hand the information over to the function module, it has to be
copied into a data object based on structure type d437_s_struct and, because the
component types are not identical, normal CORRESPONDING does not help here.

© Copyright. All rights reserved. 173

Figure 173: Field Mapping in Behavior Definition and ABAP

In RAP, it is possible to define a central, declarative mapping in the behavior definition and to
use this mapping in the behavior implementation with a special variant of the
CORRESPONDING expression.

This technique is particularly interesting for the unmanaged implementation type, which
essentially represents a kind of wrapper for existing legacy functionality. But, with the
managed implementation type, it can happen, for example, that the code for a determination
or validation already exists, but is based on "old" (legacy) data types.

In the example, the behavior definition contains a mapping statement for structure type
d437_s_struct with the pairs of entity fields and structure components.

The ABAP coding in the behavior implementation defines a data object ls_struct, which is
typed with d437_s_struct and a data object ls_entity typed with a derived structure type
for entity d437_i_entity.

When copying information from ls_entity to ls_struct, the mapping is used in a
CORRESPONDING expression with the addition MAPPING FROM ENTITY. When copying
information from ls_struct to ls_entity, the addition MAPPING TO ENTITY is used
instead.

Unit 6: Transactional Apps with Unmanaged Business Object

174 © Copyright. All rights reserved.

Control Mapping

Figure 174: The Need for Control Type Mapping

In some legacy scenarios, as well as the dictionary type directly corresponding to the entity,
there is a second dictionary type that contains the same components, but all of them have
data type C(1).

This type is then used to indicate the fields in the main structure that are accessed by an
operation (update, read, and so on).

Note:
Such type pairs are often used in BAPIs, for example, BAPIAD2VD/BAPIAD2VDX,
where the control data element is BAPIUPDATE with the type C(1).

When calling such existing code, the actual parameter for such a control structure has to be
filled with the values from the %CONTROL structure in the derived types.

As well as the possibly different field names, you have to consider the different concepts for
bool-like types that are used in RAP and in legacy code. Where ABAP traditionally uses type
C(1) with values 'X' and ' ' (Space), RAP uses the more modern approach of type X(1) with
values hexadecimal values #01 and #00.

This could lead to rather lengthy coding. In the example, only the first component of
%control is mapped to the first component of the legacy control structure ls_structx.

Lesson: Implementing Unmanaged Business Objects

© Copyright. All rights reserved. 175

Figure 175: Control Mapping in Behavior Definition and ABAP Coding

It is possible to include a mapping definition for the control structure in the mapping for
statement for the data structure. To do this, add keyword control, followed by the name of
the legacy control structure.

In ABAP, add keywords USING CONTROL inside the CORRESPONDING expression if you want
to populate a legacy control structure based on component %control of a derived data type.

Note:
For the opposite direction, use the following syntax: ls_entity =
CORRESPONDING #(ls_structx CHANGING CONTROL).

LESSON SUMMARY
You should now be able to:

● Implement data access of an unmanaged Business Object

Unit 6: Transactional Apps with Unmanaged Business Object

176 © Copyright. All rights reserved.

	Contents
	Course Overview
	Unit 1: The ABAP RESTful Programming Model (RAP)
	Lesson 1: Understanding the Concept and Architecture of RAP
	Overview of the ABAP RESTful Programming Model (RAP)
	ABAP Development Tools
	RAP Architecture
	The Business Scenario

	Lesson 2: Defining an OData UI Service
	Data Model Projection
	Service Definition
	Service Binding

	Unit 2: RAP Business Objects (RAP BOs)
	Lesson 1: Defining RAP Business Objects and their Behavior
	Behavior Definition
	Define the Field Mapping
	Behavior Projection

	Lesson 2: Using Entity Manipulation Language (EML) to Access RAP Business Objects
	The EML Principle
	EML Commands
	Derived Data Types
	Response Operands
	Short Form and Long Form
	Alias Names for Entities

	Lesson 3: Understanding Concurrency Control in RAP
	Concurrency Control Concepts
	Pessimistic Concurrency Control
	Optimistic Concurrency Control
	ETag Definition and Implementation

	Lesson 4: Defining Actions and Messages
	Action Definition
	Action Implementation
	Actions in OData Services
	Actions in SAP Fiori Elements
	Messages in RAP
	EML in RAP BO Implementations

	Lesson 5: Implementing Authority Checks
	Authorization Overview
	CDS Access Controls
	Authority Check in Behavior Implementation

	Unit 3: Update and Create in Managed Transactional Apps
	Lesson 1: Enabling Input Fields and Value Help
	Basic Operation UPDATE
	Static Field Control
	Value Help for Input Fields

	Lesson 2: Implementing Input Checks with Validations
	Validation Definition
	Validation Implementation
	Validation Messages

	Lesson 3: Providing Values with Determinations
	Standard Operation CREATE
	Numbering
	Determination Definition
	Determination Implementation

	Lesson 4: Implementing Dynamic Feature Control
	Action, Operation, and Field Control
	Feature Control Definition
	Instance Feature Handler Method
	Response Parameter RESULT
	Feature Control Implementation

	Unit 4: Draft-Enabled Transactional Apps
	Lesson 1: Understanding the Draft Concept
	Draft Motivation
	Draft Enabled RAP Business Objects
	Draft Tables
	Concurrency Control in Draft
	ETag Fields in Draft
	Draft Actions

	Lesson 2: Developing Draft-Enabled Applications
	Draft in SAP Fiori Elements
	Validations During Prepare
	Transition Messages and State Messages
	Implementation Aspects of Draft

	Unit 5: Transactional Apps with Composite Business Object
	Lesson 1: Defining Composite RAP Business Objects
	Composite Business Objects in RAP
	CDS Compositions and To-Parent Associations
	Behavior Definition for Composite RAP BO

	Lesson 2: Defining Compositions in OData UI Services
	Composition in Data Model Projection
	Composition in Behavior Projection
	Facets and Additional Object Page in SAP Fiori

	Lesson 3: Implementing the Behavior for Composite RAP BOs
	Read-by-Association Operations
	Create-by-Association Operations

	Unit 6: Transactional Apps with Unmanaged Business Object
	Lesson 1: Understanding Data Access in Unmanaged Implementations
	Interaction Phase and Save Sequence
	Unmanaged versus Managed
	Handler Class and Saver Class
	The Save Sequence

	Lesson 2: Implementing Unmanaged Business Objects
	Type Mapping
	Control Mapping

